Page 298 - Fundamentals of Probability and Statistics for Engineers
P. 298

Parameter Estimation                                            281
                            ^
                      ^
             Estimates   1 and   2 of   1 ˆ m and   2 ˆ   2  based on the sample values given
           by Table 8.1 are, following Equations (9.64) and (9.65),
                                         200
                                      1  X
                                 ^
                                   1 ˆ      x j  70;
                                     200
                                         jˆ1
                                         200
                                                ^
                                 ^
                                                   2
                                   2 ˆ  1  X …x j     1 †  4;
                                     200
                                         jˆ1
           where x j ,  j ˆ  1, 2, . . . , 200, are sample values given in Table 8.1.
             Example 9.10. Problem: consider the binomial distribution
                                        k
                             p X …k; p†ˆ p …1   p† 1 k ;  k ˆ 0; 1:      …9:66†
           Estimate parameter p based on a sample of size n.
             Answer: the method of moments suggests that we determine the estimator for
             ^
           p, P,  by equating   1  to M 1 ˆ  X . Since
                                       1 ˆ EfXgˆ p;

           we have

                                         ^
                                         P ˆ X:                          …9:67†
           The mean of P ^  is
                                           n
                                         1  X
                                    ^
                                 EfPgˆ       EfX j gˆ p:                 …9:68†
                                         n
                                          jˆ1
           Hence it is an unbiased estimator. Its variance is given by

                                                 2  p…1   p†
                                 ^
                             varfPgˆ varfXgˆ     ˆ         :             …9:69†
                                               n      n
           It is easy to derive the CRLB for this case and show that P ^  defined by Equation
           (9.67) is also efficient.
             Example 9.11. Problem: a set of 214 observed gaps in traffic on a section of
           Arroyo Seco Freeway is given in Table 9.1. If the exponential density function

                                  f …t;  †ˆ  e   t ;  t   0;             …9:70†

           is proposed for the gap, determine parameter    from the data.








                                                                            TLFeBOOK
   293   294   295   296   297   298   299   300   301   302   303