Page 302 - Fundamentals of Probability and Statistics for Engineers
P. 302

Parameter Estimation                                            285
                                     ^
           produces a moment estimator    for    in the form

                                             2    1=2
                                      ^
                                        ˆ         :                      …9:82†
                                           M 2
           Although this estimator may be inferior to 1/X  in terms of the quality criteria
           we have established, an interesting question arises: given two or more moment
           estimators, can they be combined to yield an estimator superior to any of the
           individual moment estimators?
             In what follows, we consider a combined moment estimator derived from an
                                                                  ^
                                                                     ,
           optimal linear combination of a set of moment estimators. Let   (1) ^ (2) ,...,
           ^  p)
               be p moment estimators for the same parameter  . We seek a combined

           estimator     p  in the form
                                                    ^ …p†
                                        ^ …1†

                                  ˆ w 1    ‡     ‡ w p   ;               …9:83†
                                  p
           where  coefficients  w 1 , .. .,  and  w p  are to be chosen in such a way that it is
                    ^  j)
           unbiased if   , j ˆ  1, 2, . . . , p, are unbiased and the variance of      is minimized.
                                                                 p
             The unbiasedness condition requires that
                                    w 1 ‡     ‡ w p ˆ 1:                 …9:84†
           We thus wish to determine coefficients w j  by minimizing

                                                 p
                                                        )

                                                     ^ …j†
                                                X
                              Q ˆ varf  gˆ var     w j    ;              …9:85†
                                       p
                                                jˆ1
           subject to Equation (9.84).
                                                 ^  p)
                                 ^ T
                                       ^  1)
                  T
                                                             T
             Let u ˆ [1        1], Q ˆ [            ], and w ˆ [w 1        w p ].
           Equations (9.84) and (9.85) can be written in the vector–matrix form
                                          T
                                        w u ˆ 1;                         …9:86†
           and
                                                 )
                                          p
                                         X             T
                                              ^ …j†
                             Q…w†ˆ var      w j    ˆ w  w;               …9:87†
                                         jˆ1
                                     ^  i) ^  j)
           where   ˆ [  ij ]with   ij ˆ covf  ,   g.
             In order to minimize Equation (9.87) subject to Equation (9.86), we consider
                                               T
                                        T
                                                       T
                               Q …w†ˆ w  w   w u     u w                 …9:88†
                                1



                                                                            TLFeBOOK
   297   298   299   300   301   302   303   304   305   306   307