Page 99 - Fundamentals of Probability and Statistics for Engineers
P. 99

82                     Fundamentals of Probability and Statistics for Engineers

           Now,
                                          n
                              n          X                 X
                                                            n
                        2
                                 2
                            X
                    EfY gˆ      k p …k†ˆ    k…k   1†p …k†‡    kp …k†;
                                   Y                Y           Y
                             kˆ0         kˆ0               kˆ0
           and
                                      n
                                     X
                                        kp …k†ˆ nq:
                                          Y
                                     kˆ0
           Proceeding as in Example (4.1),
                 n                          n
                X                         2  X    …n   2†!   k 2     n k
                   k…k   1†p …k†ˆ n…n   1†q                 q  …1   q†
                            Y                 …k   2†!…n   k†!
                kˆ0                        kˆ2
                                           X m    !
                                            m
                                                    j
                                ˆ n…n   1†q 2      q …1   q† m j
                                                j
                                           jˆ0
                                          2
                                ˆ n…n   1†q :
           Thus,
                                     2
                                                 2
                                 EfY gˆ n…n   1†q ‡ nq;
           and
                                                  2
                                       2
                           2
                            ˆ n…n   1†q ‡ nq  …nq† ˆ nq…1   q†:
                           Y
             Example 4.6. We again use Equation (4.8) to determine the variance of X




           defined in Example 4.2. The second moment of X  is, on integrating by parts,
                                         Z  1          1
                                              2  2x
                                   2
                               EfX gˆ 2      x e  dx ˆ :
                                          0            2
           Hence,
                                                 1  1   1
                                             2
                               2
                                       2
                                ˆ EfX g  m ˆ        ˆ :
                               X             X
                                                 2  4   4
             Example 4.7. Problem: owing to inherent manufacturing and scaling inaccura-
           cies, the tape measures manufactured by a certain company have a standard
           deviation of 0.03 feet for a three-foot tape measure. What is a reasonable
           estimate of the standard deviation associated with three-yard tape measures
           made by the same manufacturer?





                                                                            TLFeBOOK
   94   95   96   97   98   99   100   101   102   103   104