Page 101 - Fundamentals of Probability and Statistics for Engineers
P. 101

84                     Fundamentals of Probability and Statistics for Engineers

           which the value at Y ˆ y i is EfXjY ˆ y i g.  Hence, EfXjYg  is itself a random
           variable, and one of its very useful properties is that


                                   EfXgˆ EfEfXjYgg                      …4:13†

           If Y  is a discrete random variable taking on values y 1 , y 2 ,...,  the above states
           that
                                    X
                            EfXgˆ      EfXjY ˆ y i gP…Y ˆ y i †;         …4:14†
                                     i
           and
                                         1
                                       Z
                               EfXgˆ       EfXjygf …y†dy;                …4:15†
                                                   Y
                                         1
           if Y  is continuous.
             To establish the relation given by Equation (4.13), let us show that Equation
           (4.14) is true when both X  and Y  are discrete. Starting from the right-hand side
           of Equation (4.14), we have

               X                         X X
                  EfXjY ˆ y i gP…Y ˆ y i †ˆ    x j P…X ˆ x j jY ˆ y i †P…Y ˆ y i †:
                i                         i  j
           Since, from Equation (2.24),

                                            P…X ˆ x j \ Y ˆ y i †
                          P…X ˆ x j jY ˆ y i †ˆ              ;
                                                P…Y ˆ y i †
           we have

                       X                        X X
                          EfXjY ˆ y i gP…Y ˆ y i †ˆ    x j p XY …x j ; y i †
                        i                         i  j
                                                X     X
                                              ˆ          p  …x j ; y i †
                                                    x j
                                                          XY
                                                  j    i
                                                X
                                              ˆ     x j p …x j †
                                                      X
                                                  j
                                              ˆ EfXg;
           and the desired result is obtained.
             The usefulness of Equation (4.13) is analogous to what we found in using the
           theorem of total probability discussed in Section 2.4 (see Theorem 2.1, page 23).








                                                                            TLFeBOOK
   96   97   98   99   100   101   102   103   104   105   106