Page 38 - Fundamentals of Reservoir Engineering
P. 38

CONTENTS                                    XXXVIII



               p  =  p e = constant,  at r = r e                                         (5.14)     132
                     ∂ p
                and      = 0 for all r and t                                             (5.15)     132
                      t ∂

                1   ∂     k    ∂ p  k ∂ ρ  ∂ p  kρ ∂ p   kρ   ∂ 2 p      ∂ p
                            r ρ  +       r    +        +    r   2    =  φ cρ             (5.16)     133
                r ∂ r  	  µ 
  r ∂  µ  r ∂  r ∂  µ   r ∂  µ    r ∂        t ∂


                   ∂ p  ∂ ρ
                cρ    =                                                                  (5.17)     133
                    r ∂   r ∂

                1 ∂     k    ∂ p   k        ∂ p   2  kρ ∂ p  kρ  ∂ 2 p      ∂ p
                            r ρ  +   c r ρ        +      +    r       =  φ cρ            (5.18)     133
                r ∂ r  	  µ 
  r ∂  µ    	  r ∂ 
  µ   r ∂  µ    r ∂  2       t ∂


                ∂ 2 p  +  1 p  =  φµ c ∂ p                                               (5 19)     134
                        ∂
                 r ∂  2  r ∂ r  k   t ∂
                1 ∂    ∂ p    =  φµ c ∂ p                                                (5.20)     134
                     r

                r ∂ r       r ∂     k  t ∂

               cp << 1                                                                   (5.21)     134
                                                                                         (5.22)     134
               c t  = c o S o  + c w S wc  + c f

               φ  ab s ol ut e  × (c o S o  + c w S wc  + c f )                          (5.23)     134

                                   (c S +  c S    +  c )
               φ  absol ute  (1 − S wc) ×   o  o  w  wc  f                               (5.24)     135
                                         (1 S )
                                           −
                                              wc
               cV (p i − p) = qt                                                          (6.1)     136

                1 ∂    ∂ p      qµ
                      r      =−                                                           (6.2)     137
                                 2
                rr ∂    r ∂    π rkh
                                 e
                         µ
                ∂ p     q r 2
                   =−         +  C 1                                                      (6.3)     137
                          2
                       π
                 t ∂  2r kh
                          e
                ∂ p     qµ     1  r
                    =           −  2                                                      (6.4)     137
                        π
                 r ∂   2 kh    r  r e
                                         2
                      p r    qµ         r    r
                                         2
                     p       p wf  =  2kh      lnr −  2 r e r    w                        (6.5)     137
                             π
                                        2
                           qµ      r    r
               p − p wf  =       ln  −   2                                                (6.6)     137
                 r
                          2kh      r w  2r e
                           π
                            qµ      r   1
               p −   p wf  =       ln  e  −  + S                                          (6.7)     137
                 e
                           2kh      r w  2
                            π
   33   34   35   36   37   38   39   40   41   42   43