Page 254 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 254

CONVECTION IN POROUS MEDIA
                        246
                        Momentum equations
                                                   ∂
                                        1 ∂u
                                                                              ∗
                                                                             u
                                               1
                                                                              i
                                                                       ∗
                                                                       f
                                                                  ∂x

                                          ∂t  ∗ ∗ i  + u ∗ j  ∂x ∗ j     u   ∗ i     =− 1 ∂ i ∗  ( p ) −  ReDa
                                                                       !
                                                     ∗
                                              1.75 |V | u ∗ i  J   ∂ u i     Gr
                                                                    2 ∗
                                           −√     √     3/2  +       ∗2  + γ i  2  T  ∗     (8.23)
                                               150  Da       Re    ∂x        Re
                                                                     i
                        Energy equation
                                                                          !
                                                                      2
                                               ∂T  ∗   ∂T  ∗    k  ∗  ∂ T  ∗
                                              σ    + u ∗ i  =                               (8.24)
                                               ∂t ∗     ∂x i ∗  ReP r  ∂x ∗2
                                                                       i
                           In the previous equations, the parameters governing the flow and heat transfer are the
                        Darcy number (Da), Reynolds number (Re), Prandtl number (Pr), Grashof number (Gr),
                                                                                        ∗
                        the ratio of heat capacities (σ); porosity of the medium ( ), conductivity ratio (k ), viscosity
                        ratio (J), and the anisotropic property ratios, for the case of an anisotropic medium. The
                        definitions for the scales and non-dimensional parameters are
                                      x i     u i    tu a      p f        T − T a    µ e
                                  ∗       ∗      ∗        ∗          ∗
                                 x =    ; u =   ; t =   ; p =      ; T =        ; J =   ;
                                  i
                                                          f
                                          i
                                      L       u a     L       ρ f u a 2  T w − T a   µ f
                                       (ρc p ) f + (1 −  )(ρc p ) s  k  ρ f u a L
                                                           ∗
                                 σ =                     ; k =   ; Re =      ;
                                             (ρc p ) f         k f       µ f
                                      ν f      κ       gβ T L 3
                                Pr =    ; Da =  2 ; Gr =   2                                (8.25)
                                      α f     L           ν
                                                           f
                           The above scales are suitable for most forced and mixed convection problems. However,
                        for buoyancy-driven flows, it is convenient to handle the equations using the following
                        definition of the Rayleigh number (Ra), that is,
                                                           gβ T L 3
                                                      Ra =                                  (8.26)
                                                              να
                        where the following different scales need to be employed in solving natural convection
                        problems:
                                                    u i L    tα f     pL 2
                                                ∗        ∗        ∗
                                               u =     ; t =  2  ; p =   2                  (8.27)
                                                i
                                                     α f     L        ρ f α
                                                                         f
                           The non-dimensional governing equations for natural convection are
                        Continuity equation
                                                         ∂u ∗
                                                           i  = 0                           (8.28)
                                                         ∂x ∗
                                                           i
                        Momentum equations
                                       1 ∂u ∗ i  + u ∗  ∂    u ∗ i     1 ∂  ∗  Pru ∗ i
                                              1
                                                                      f
                                         ∂t  ∗     j  ∂x  ∗     =−   ∂x  ∗ ( p ) −  Da
                                                    j             i
                                                                       !
                                             1.75 |V | u ∗ i  JP r  ∂ u i
                                                    ∗
                                                                    2 ∗
                                          −√     √     3/2  +        ∗2  + γ i RaP rT  ∗    (8.29)
                                              150  Da             ∂x
                                                                     i
   249   250   251   252   253   254   255   256   257   258   259