Page 57 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 57

THE FINITE ELEMENT METHOD
                                                                  k
                                                                k
                                             y
                                                                k

                                                T i         T k  (x , y )                      49
                                                  i
                                                (x , y ) i            T
                                                  i
                                                                    j  j
                                                                   (x , y )
                                                                    j
                                                                      j
                                                                          x
                                            Figure 3.7  A linear triangular element

                        where the polynomial is linear in x and y and contains three coefficients. Since a linear
                        triangle has three nodes (Figure 3.7), the values of α 1 , α 2 and α 3 are determined from

                                                   T i = α 1 + α 2 x i + α 3 y i

                                                   T j = α 1 + α 2 x j + α 3 y j
                                                   T k = α 1 + α 2 x k + α 3 y k            (3.35)

                        which results in the following:

                                       1
                                  α 1 =   (x j y k − x k y j )T i + (x k y i − x i y k )T j + (x i y j − x j y i )T k
                                      2A
                                       1
                                  α 2 =   (y j − y k )T i + (y k − y i )T j + (y i − y j )T k
                                      2A
                                       1
                                  α 3 =   (x k − x j )T i + (x i − x k )T j + (x j − x i )T k  (3.36)
                                      2A
                        where ‘A’ is the area of the triangle given by

                                            
                                      1 x i y i
                                              = (x i y j − x j y i ) + (x k y i − x i y k ) + (x j y k − x k y j )
                            2A = det  1 x j y j                                            (3.37)
                                      1 x k y k
                           Substituting the values of α 1 , α 2 and α 3 into Equation 3.35 and collating the coefficients
                        of T i ,T j and T k ,weget


                                                                              
                                                                           T i 

                                        T = N i T i + N j T j + N k T k = N i N j N k  T j  (3.38)
                                                                              
                                                                             T k
   52   53   54   55   56   57   58   59   60   61   62