Page 76 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 76

68
                                  y
                                                                        h
                                       3     h      h              THE FINITE ELEMENT METHOD
                                                       3                5
                                                                             4
                                                                        6
                                               z
                                    1      2
                                                x    1       2     z     1   2   3     z
                                        (a)                (b)                (c)
                        Figure 3.19 Isoparametric transformation of a single triangular element. (a) Global, (b)
                        local - linear and (c) local - quadratic
                           For the mid-side nodes,
                                                N 2 = 4L 1 L 2 = 4ζ(1 − ζ − η)

                                                N 4 = 4L 2 L 3 = 4ζη
                                                N 6 = 4L 3 L 1 = 4η(1 − ζ − η)             (3.131)
                           Consider the linear triangular element shown in Figure 3.19(a).

                                    x(L 1 ,L 2 ) = N 1 (L 1 ,L 2 )x 1 + N 2 (L 1 ,L 2 )x 2 + N 3 (L 1 ,L 2 )x 3
                                    y(L 1 ,L 2 ) = N 1 (L 1 ,L 2 )y 1 + N 2 (L 1 ,L 2 )y 2 + N 3 (L 1 ,L 2 )y 3  (3.132)
                           Where x 1 ,x 2 ,x 3 ,y 1 ,y 2 and y 3 are the global coordinates of the three-node triangular
                        element, which are used for representing the geometry. Replacing the shape functions by
                        the area coordinate gives
                                          x(L 1 ,L 2 ) = x 1 L 1 + x 2 L 2 + x 3 (1 − L 1 − L 2 )

                                          y(L 1 ,L 2 ) = y 1 L 1 + y 2 L 2 + y 3 (1 − L 1 − L 2 )  (3.133)
                           The components of the Jacobian matrix are
                                                 ∂x   ∂y
                                                        
                                                              (x 1 − x 3 )(y 1 − y 3 )

                                                        
                                         [J] =    ∂L 1 ∂L 1   =                          (3.134)
                                               ∂x
                                                      ∂y     (x 2 − x 3 )(y 2 − y 3 )
                                                ∂L 2 ∂L 2
                           The determinant of the Jacobian matrix is
                                     det [J] = (x 1 − x 3 )(y 2 − y 3 ) − (x 2 − x 3 )(y 1 − y 3 ) = 2A  (3.135)
                        where A is the area of the element. The inverse of the Jacobian matrix is

                                    1    (y 2 − y 3 ) −(y 1 − y 3 )  1  (y 2 − y 3 ) −(y 1 − y 3 )
                             −1
                           [J]  =                            =                             (3.136)
                                  det J −(x 2 − x 3 )(x 1 − x 3 )  2A −(x 2 − x 3 )(x 1 − x 3 )
                           Finally, the derivatives in global coordinates are written as
                                                                  
                                                    ∂N 1        ∂N 1 
                                                                  
                                                    ∂x        −1  ∂L 1
                                                                  
                                                         = [J]                             (3.137)
                                                   ∂N 1       ∂N 1 
                                                                  
                                                    ∂y            ∂L 2
                                                                  
   71   72   73   74   75   76   77   78   79   80   81