Page 77 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 77

THE FINITE ELEMENT METHOD
                                       y
                                           5                  y   (1,6)                        69
                                                 4
                                                       3
                                              L 2
                                        6                                   (3,2)
                                              L 3
                                          L 1
                                               2
                                                          x                       x
                                      1                      (0,0)
                                               Figure 3.20  Triangular elements

                        Example 3.2.6 Calculate ∂N 4 /∂x and ∂N 4 /∂y at a point (1, 4) for the quadratic triangu-
                        lar element shown in Figure 3.20 (left) when the geometry is represented by a three-node
                        triangle (right).
                           The coordinates are expressed as

                                                  x = x 1 L 1 + x 2 L 2 + x 3 L 3
                                                  y = y 1 L 1 + y 2 L 2 + y 3 L 3          (3.138)

                           After substituting the coordinates of the three points, we have

                                                      x = 3L 2 + L 3
                                                      y = 2L 2 + 6L 3                      (3.139)
                           The determinant of the Jacobian matrix is (Equation 3.135)

                                              det [J] = (−1)(−4) − (2)(−6) = 16            (3.140)
                           The inverse of the Jacobian is therefore (Equation 3.136)

                                                           1    −46
                                                     −1
                                                   [J]  =                                  (3.141)
                                                          16 −2 −1
                           The shape function N 4 is given by 4L 2 L 3 = 4L 2 (1 − L 1 − L 2 )
                                                         
                                          ∂N 4         ∂N 4 
                                                         
                                           ∂x        −1  ∂L 1       L 2 + 1.5L 3
                                                         
                                                = [J]          =                           (3.142)
                                                                  0.5L 2 − 0.25L 3
                                         ∂N 4        ∂N 4 
                                                         
                                           ∂y            ∂L 2
                                                         
                           To determine the local coordinates corresponding to (x, y) = (1, 4), we have the follow-
                        ing three equations (Equation 3.139):
                                                         3L 2 + L 3 = 1
                                                        2L 2 + 6L 3 = 4
                                                     L 1 + L 2 + L 3 = 1                   (3.143)
   72   73   74   75   76   77   78   79   80   81   82