Page 741 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 741

696                            Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological



            TABLE 22.8
            Examples of Calculation of Cell-Yield and Other Values for Stoichiometric Equation for Oxidations
            of Substrates to Obtain Microbial Cells
            Substrate                                     Domestic Wastewater, Formula: C 10 H 19 O 3 N

            Reaction equation obtained from Orhon and Artan (1994, p. 101) based on half-reactions compiled in their Table 2.12
             Assumption: Y ¼ 0.67 e-eq. cells=e-eq. substrate
            1=50C 10 H 19 O 3 N þ 1=12O 2 þ 1=75NH 4 þ 1=75HCO 3 ! 1=30C 5 H 7 O 2 N þ 7=150CO 2 þ 25=150H 2 O(equation for one e eq)

                                     þ

            1=50   201   1=12   32                    1=30  113
            Cell yield and other values
            (1) Y(C 10 H 19 O 3 N-stoichiometric) ¼ 0.64 g cell COD=g substrate COD (Orhon and Artan, 1994, pp. 98)
            (2) Y(C 10 H 19 O 3 N-experimental) ¼ 0.66 g cell COD=g substrate COD (Orhon and Artan, 1994, pp. 98)
            (3) Y(C 10 H 19 O 3 N-experimental) ¼ 0.46 g cell VSS=g substrate COD (Orhon and Artan, 1994, pp. 98)
            (4) f(conversion) ¼ (1.42 g cell COD=g cell VSS) (Grady et al., 1999, p. 70)
            (5) Y(C 10 H 19 O 3 N-stoichiometric) ¼ 0.94 g cells synthesized=g substrate degraded (calculated)
            (6) Y(O 2 -stoichiometric) ¼ 0.66 g O 2 used=g substrate degraded (calculated)
            (7) Calculation of substrate COD based on one e-eq electron transfer in reaction:
                                      (1=50   201 g substrate=e-eq)=(8 g COD=e-eq) ¼ 0.5025 g substrate=g substrate COD
                                          ¼ 1.99 g substrate COD=g substrate
            Substrate                                     Pentose, Formula: C 5 H 10 O 5
            1. Cell synthesis reaction equation
             Obtained from Orhon and Artan (1994, p. 103) based on half-reactions compiled in their Table 2.12.
             Assumption: Y ¼ 0.67 e-eq. cells=e-eq. substrate.
               1=20C 5 H 10 O 5 þ 1=12O 2 þ 2=60NH 4 þ 2=60HCO 3 ! 2=60C 5 H 7 O 2 N þ 7=60CO 2 þ 13=60H 2 O

                                       þ
               1=20   150  1=12   32                  2=60   113
            2. Cell yield and other values
             (1) Y(C 5 H 7 O 2 N-stoichiometric) ¼ 0.50 g cells synthesized=g substrate degraded
             (2) Y(O 2 -stoichiometric) ¼ 0.36 g O 2 used=g substrate degraded
            3. Oxidation of cells to get f (cell COD=g cells)
             Oxidation reaction for cells to get COD equivalent. Overall equation from half-reactions by Orhon and Artan (1994, p. 88); equation coefficients are for
             transfer of one e-eq needed to balance the two half-reactions.
                                        1=20C 5 H 7 O 2 N þ 5=20O 2 ! 5=20CO 2 þ 1=20NH 3 þ 2=20H 2 O
                                        1=20   113  5=20   32
                                        f(cell COD=g cells) ¼ (5=20   32)=(1=20   113) ¼ 1.42 g cell COD=g cells
            4. Oxidation of pentose substrate to get f (substrate COD=g substrate)—(see also Benefield and Randall, 1980, p. 73)
                                             1=20 C 5 H 10 O 5 þ 1=4O 2 ! 1=4CO 2 þ 1=4H 2 O
                                             1=20   150  1=4   32
                                             f(substrate COD=g substrate) ¼ (1=4   32)=(1=20   150) ¼ 1.07 g substrate COD=g substrate
            5. Calculation of Y (g cell COD=g substrate COD)
                        Y(g cell COD=g substrate COD) ¼ f (g cell COD=g cells)   [1=f (substrate COD=g substrate)]   Y(g cells=g substrate)
                                              ¼ (1.42 g cell COD=g cells)   [1=(1.07 g substrate COD=g substrate)]   (0.50 g cells=g substrate)
                                              ¼ 0.66 g cell COD=g substrate COD





            22.5.3 NET SPECIFIC GROWTH RATE, m(net)            Dividing both sides of Equation 22.35 by X gives (Lawrence,
                                                               1975, p. 223)
            The net increase [dX=dt] net , in viable cell mass is the differ-
            ence between growth rate and depletion rate:
                                                                                ½ dX=dtŠ net  ¼ m   b     (22:36)
                                                                                   X

                           dX       dX    dX
                                                       (22:33)
                           dt    ¼  dt     dt                  And if we define,
                              net      g      d
                                 ¼ mX   bX             (22:34)
                                                                                        ½ dX=dtŠ net      (22:37)
                                 ¼ (m   b)X            (22:35)                  m(net)     X
   736   737   738   739   740   741   742   743   744   745   746