Page 170 - gas transport in porous media
P. 170

Chapter 8: Gas Injection and Fingering in Porous Media
                           Bratvedt, F., Bratvedt, K., Buchholz, C.F., Holden, L., Holden, H., and Risebro, N.H.,Anew front-tracking
                             method for reservoir simulation. SPE 19805 (1992).            163
                           Bradtvedt, F., Gimse, T., and Tegnander, C., Streamline computation for porous media flow including
                             gravity. Transport in Porous Media 25, 1, 63 (1996).
                           Cahn, J.W., Critical point wetting. J. Chem. Phys. 66, 3667 (1977).
                           Chen, J.D., and Wilkinson, D., Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55, 1892
                             (1985).
                           Christensen, J.R., Stenby, E.H., and Skauge, A., Review of WAG field experience. SPE paper 39883,
                             Tulsa, OK (1998a).
                           Christensen, J.R., Stenby, E.H., and Skauge, A., Compositional and relative permeability effects on
                             near-miscible WAG. SPE paper 39627, Tulsa, OK (1998b).
                           Christie, M.A., High-resolution simulation of unstable flow in porous media. SPE 16005 (1989).
                           Christie, M.A., and Bond, D.J., Detailed simulation of unstable processes in miscible flooding. SPE/DOE
                             14896 (1987).
                           Christie, M.A., Muggeridge, A.H., and Barley, J.J., 3D simulation of viscous fingering and WAG schemes.
                             SPE 21238 (1993).
                           Cinar, Y., and Orr, Jr., F.M., Measurement of three phase relative permeability with IFT variation. SPE
                             89419 (2004).
                           Craig, F.F., A current appraisal of field miscible slug projects. JPT 22, 529 (SPE 2418). (1970).
                           Darlow, B.L., Ewing, M.F., and Wheeler, M.F., Mixed finite element method for miscible displacement
                             problems in porous media. SPE 10501 (1984).
                           DeGregoria, A.J., A Predictive Monte Carlo simulation of two-fluid flow through porous media at finite
                             mobility ratio. Phys. Fluids 28, 2933 (1985).
                           Delclaud, J., Rochon, J., and Nectoux, A., Investigation of gas/oil relative permeabilities:
                             high-permeability oil reservoir application. SPE 16966 (1987).
                           Douglas, J., Wheeler, M.F., Darlow, B.L., and Kendall, R.P., Self adaptive finite element simulation of
                             miscible displacement in porous media. Comp. Meth. Appl. Mech. Eng. 47, 131 (1984).
                           Dumore, J.M., Stability considerations in downward miscible displacements. SPE 961, 358 (1964).
                           Dykstra, H., and Parsons, R.L., The prediction of oil recovery by waterflooding. In, Secondary Recovery
                             of Oil in the United States,2 nd  ed. (American Petroleum Inst., New York City, 1950), p. 160.
                           Ebrahimi, F., and Sahimi, M., Multiresolution wavelet coarsening and analysis of transport in
                             heterogeneous media. Physica A 316, 160 (2002).
                           Ebrahimi, F., and Sahimi, M., Multiresolution wavelet scale up of unstable miscible displacements in flow
                             through heterogeneous porous media. Transport in Porous Media 51, 1, 57–102 (2004).
                           Ewing, R.E., Russell, T.F., and Wheeler, M.F., Convergence analysis of an approximation of miscible
                             displacement in porous media by mixed finite elements and a modified method of characteristics. Comp.
                             Meth. Appl. Mech. Eng. 47, 73 (1984).
                           Ewing, R.E., Russell, T.F., andYoung, L.C.,An isotropic coarse-grid dispersion model of heterogeneity and
                             viscous fingering in five-spot miscible displacement that match experiments and fine grid simulations.
                             SPE 18441 (1989).
                           Ewing, R.E., and Wang, H., Eulerian-Lagrangian localized adjoint methods for variable coeffi-
                             cient advective-diffusive-reactive equations in groundwater contaminant transport. In: Advances in
                             Optimization and Numerical Analysis 275, edited by S. Gomez and J.P. Hennart (Kluwer, Netherlands,
                             1994), p. 185.
                           Fanchi, J.R., Chaos: a source of miscible viscous fingering instabilities. SPE 21587 (1990).
                           Fanchi, J.R., and Christianson, R.L., Applicability of fractals to the description of viscous fingering.
                             SPE 19782 (1989).
                           Fayers, F.J., An approximate model with physically interpretable parameters for representing miscible
                             viscous fingering. SPE 13166 (1988).
                           Fayers, F.J., Blunt, M.J., and Christie, M.A., Accurate calibration of empirical viscous fingering models.
                             In, Proceedings of 2nd European Conference on the Mathematics of Oil Recovery (SPE, Paris,
                             1990), 45.
   165   166   167   168   169   170   171   172   173   174   175