Page 325 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 325
328 References
Pan, G.C., 1993b. Indicator favorability theory for mineral potential mapping. Nonrenewable
Resources 2(4): 292-311.
Pan, G.C., 1993c. Regionalized favorability theory for information synthesis in mineral
exploration. Mathematical Geology 25(5): 603-631.
Pan, G.C., Harris, D.P., 1990. Quantitative analysis of anomalous sources and geochemical
signatures in the Walker Lake quadrangle of Nevada and California. Journal of Geochemical
Exploration 38(3): 299-321.
Pan, G.C., Harris, D.P., 1992a. Decomposed and weighted characteristic analysis for the
quantitative estimation of mineral resources. Mathematical Geology 24(7): 807-823.
Pan, G.C., Harris, D.P., 1992b. Estimating a favourability equation for the integration of geodata
and selection of mineral exploration targets. Mathematical Geology 24(2): 177-202.
Pan, G.C., Harris, D.P., 2000. Information Synthesis for Mineral Exploration, Oxford University
Press, Inc., New York.
Pan, G., Harris, D.P., Heiner, T., 1992. Fundamental issues in quantitative estimation of mineral
resources. Natural Resources Research 1(4): 281-292.
Pan, G.C., Portefield, B., 1995. Large-scale mineral potential estimation for blind precious metal
ore deposits. Nonrenewable Resources 4(2): 187-207.
Panahi, A., Cheng, Q., 2004. Multifractality as a measure of spatial distribution of geochemical
patterns. Mathematical Geology 36(7): 827-846.
Panahi, A., Cheng, Q., Bonham-Carter, G.F., 2004. Modelling lake sediment and geochemical
distribution using principal component, indicator kriging and multifractal power-spectrum
analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment,
Analysis 4(1): 59-70.
th
Parasnis, D.S., 1997, Principles of Applied Geophysics, 5 edn., Chapman and Hall, London.
Pardo-Igúzquiza, E., Chica-Olmo, M., 2005. Interpolation and mapping of probabilities for
geochemical variables exhibiting spatial intermittency. Applied Geochemistry 20(1): 157-168.
Park, N.-W., Chi, K.-H., Kwon, D.-B., 2007. Accounting for spatial patterns of multiple geological
data sets in geological thematic mapping using GIS-based spatial analysis. Environmental
Geology 51(7): 1147-1155.
Peh, Z., Miko, S., Mileusnic, M., 2006. Areal versus linear evaluation of relationship between
drainage basin lithology and geochemistry of stream and overbank sediments in low-order
mountainous drainage basin. Environmental Geology 49(8): 1102-1115.
Pendharkar, P.C., 2003. Characterization of aggregate fuzzy membership functions using Saaty’s
eigenvalue approach. Computers & Operations Research 30(2): 199-212.
Peter, C., Stuart, N., 1999.Modelling river floodplain inundation in space and time. In: B. Gittings
(Ed.), Integrating Information Infrastructures with GI Technology, Innovations in GIS 6, CRC
Press, London, pp. 255-267.
Pirajno, F., 1992. Hydrothermal Mineral Deposits, Principles and Fundamental Concepts for the
Exploration Geologists, Springer-Verlag, Berlin.
Plimer, I.R., Elliott, S.M., 1979. The use of Rb/Sr ratios as a guide to mineralization. Journal of
Geochemical Exploration 12(1): 21-34.
Polikarpochkin, V.V., 1971. The quantitative estimation of ore-bearing areas from sample data of
rd
the drainage system. In: R.W. Boyle (Ed.), Transactions 3 International Geochemical