Page 330 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 330

References                                                           333

           Skabar, A., 2007a. Mineral potential mapping using Bayesian learning for multilayer perceptrons.
              Mathematical Geology 39(5): 439-451.
           Skabar, A., 2007b. Modeling the spatial distribution of mineral deposits using neural networks.
              Natural Resource Modeling 20(3): 435-450.
           Sloan, T., 1998. Vector-to-raster conversion. In: R. Healy, S. Dowers, B. Gittings, M.J. Mineter
              (Eds.), Parallel Algorithms for GIS, Taylor and Francis, London, pp. 233-252.
           Smee, B.W., 1998. A new theory to explain the formation of soil geochemical responses overly
              deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration
              61(1-3): 149-172.
           Smith, R.E., 1987. Some conceptual models for geochemistry in areas of preglacial deep
              weathering. Journal of Geochemical Exploration 28(1-3): 337-352.
           Smith, R.E., Campbell, N.A., Perdix, J.L., 1982. Identification of some Western Australia Cu-Zn
              and Pb-Zn gossans by multi-element geochemistry. In: R.E. Smith (Ed.),  Geochemical
              Exploration in Deeply Weathered Terrain. CSIRO Institute of Energy and Earth Resources,
              Floreat Park, Western Australia, pp. 75-90.
           Snyder, J.P., 1993. Flattening the Earth: Two Thousand Years of Map Projections, University of
              Chicago Press, Chicago.
           Spatz, D.M., 1997. Remote sensing characteristics of sediment- and volcanic-hosted precious
              metal system: imagery selection for exploration and development. International Journal of
              Remote Sensing 18(7): 1413-1438.
           Stanley, C.R., 2006. Numerical transformations of geochemical data: 1. Maximizing geochemical
              contrast  to facilitate information extraction and improve data presentation.  Geochemistry:
              Exploration, Environment, Analysis 6(1): 69-78.
           Stanley, H.E.,  Meakin, P., 1988. Multifractal phenomena in physics  and chemistry. Nature
              335(6189): 405-409.
           Stein, A., Riley, J., Halberg, N., 2001. Issues  of scale for  environmental  factors. Agriculture,
              Ecosystems & Environment 87(2): 215-232.
           Stensgaard, B.M., Chung, C.J.,  Rasmussen, T.M., Stendal,  H., 2006. Assessment of mineral
              potential using  cross-validation techniques and  statistical analysis: a  case study from the
              Paleoproterozoic of West Greenland. Economic Geology 101(7): 1297-1413.
                                                    nd
           Stern, N.B., 1995. Computing in the Information Age, 2  edn., Wiley and Sons, New York.
           Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions American
              Geophysical Union 38(6): 913-920.
           Stubley, M.P., 2004. Spatial distribution of kimberlite in the Slave craton, Canada: a geometrical
              approach. Lithos 77(1-4): 683-693.
                                                                th
           Tabachnick, B.G., Fidell, L.S., 2007. Using  Multivariate Statistics, 5  edn., Allyn & Bacon,
              Boston.
           Tangestani, M.H., Moore, F., 2002. The use of Dempster-Shafer model and GIS in integration of
              geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran.
              International Journal of Applied Earth Observation and Geoinformation 4(1): 65-74.
           Tangestani, M.H., Moore, F.,  2003. Mapping porphyry  copper potential with a fuzzy model,
              northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences 50(3): 311-317.
   325   326   327   328   329   330   331   332   333   334   335