Page 326 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 326

References                                                           329

              Exploration Symposium, Special Volume 11, Canadian Institute of Mining and Metallurgy,
              pp. 585-586.
           Ponce, D.A., Glen, J.M.G., 2002. Relationship of epithermal gold deposits to large-scale fractures
              in Northern, Nevada. Economic Geology 97(1): 3-9.
           Porwal, A., 2006. Mineral Potential Mapping with Mathematical Geological Models, Ph.D. Thesis,
              University of  Utrecht, The Netherlands, ITC  (International  Institute for Geo-Information
              Science and Earth Observation) Publication No. 130, Enschede, 289 pp.
           Porwal, A., Carranza, E.J.M., 2008. Classifiers for modelling of mineral potential. In: O. Pourret,
              P. Naïm, B. Marcot (Eds.), Bayesian Networks: A Practical Guide to Applications. John Wiley
              & Sons, Chichester, pp. 149-171.
           Porwal, A., Carranza,  E.J.M.,  Hale, M., 2001. Extended weights-of-evidence modelling for
              predictive mapping of base metal deposit potential in Aravalli province, western India.
              Exploration and Mining Geology 10(4): 273-287.
           Porwal, A., Carranza, E.J.M., Hale, M., 2003a. Artificial neural networks for mineral potential
              mapping. Natural Resources Research 12(3): 155-171.
           Porwal, A., Carranza, E.J.M., Hale, M., 2003b. Knowledge-driven and data-driven fuzzy models
              for predictive mineral potential mapping. Natural Resources Research 12(1): 1-25.
           Porwal, A., Carranza, E.J.M., Hale, M., 2004. A hybrid neuro-fuzzy model for mineral potential
              mapping. Mathematical Geology 36(7): 803-826.
           Porwal, A., Carranza, E.J.M.,  Hale, M., 2006a. A  hybrid fuzzy weights-of-evidence model for
              mineral potential mapping. Natural Resources Research 15(1): 1-14.
           Porwal, A., Carranza, E.J.M., Hale, M., 2006b. Bayesian network classifiers for mineral potential
              mapping. Computers & Geosciences 32(1): 1-16.
           Porwal, A., Carranza, E.J.M., Hale, M., 2006c. Tectonostratigraphy and base-metal mineralization
              controls, Aravalli province (western India):  new interpretations from geophysical data
              analysis. Ore Geology Reviews 29(3-4): 287-306.
           Porwal, A., Sides, E.J., 2000. A predictive model for base metal exploration in a GIS environment.
              International Archives of Photogrammetry and Remote Sensing XXXIII(B7): 1178-1184.
           Pouch, G.W., 1997. An interactive program for computer-aided map design, display and query:
              EM AP KGS2. Computers & Geosciences 23(3): 259-266.
           Prelat, A.E., 1977. Discriminant analysis as a method of predicting mineral occurrence potentials
              in central Norway. Mathematical Geology 9(4): 343-367.
           Prol-Ledesma,  R.M., 2000. Evaluation of the  reconnaissance  results in geothermal exploration
              using GIS. Geothermics 29(1): 83-103.
           Raines, G.L., 1999. Evaluation of weights of evidence to predict epithermal gold deposits in the
              Great Basin of the western United States. Natural Resources Research 8(4): 257-276.
           Raines, G.L., Connors, K.A., Chorlton, L.B., 2007. Porphyry copper deposit tract definition – a
              global analysis comparing geologic map scales. Natural Resources Research 16(2): 191-198.
           Ranjbar, H., Honarmand, M., 2004. Integration and analysis of airborne geophysical and ETM+
              data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy
              classification. International Journal of Remote Sensing 25(21): 4729-4741.
   321   322   323   324   325   326   327   328   329   330   331