Page 120 - Geometric Modeling and Algebraic Geometry
P. 120

7 Curve Parametrization Exploiting the Newton Polygon  121
                                                                                v
                                                                         v
                           planes, which are open subsets, depending on whether ¯u¯  =0, ¯x¯  =0, ¯x¯  =0 or
                                                                                       y
                            y
                           ¯ u¯  =0. Again we introduce local coordinates:
                                                 ⎧      ¯ x y
                                                 ⎪ (1, 1, , )=:(1, 1,u 1 ,v 1 ) if ¯u¯v  =0
                                                           ¯
                                                        ¯ u v
                                                 ⎨ u ¯     ¯ ¯ y
                                                 ⎪
                                                    ( , 1, 1, )=:(v 2 , 1, 1,u 2 ) if ¯x¯v  =0
                                             y
                                      (¯u, ¯v, ¯x, ¯)=  ¯ x ¯ u v  ¯ v
                                                 ⎪ ( , , 1, 1) =: (u 3 ,v 3 , 1, 1) if ¯x¯y  =0
                                                       ¯
                                                 ⎪ x y
                                                    (1, , , 1) =: (1,u 4 ,v 4 , 1) if ¯u¯y  =0
                                                 ⎩   ¯  ¯ v ¯  ¯ x
                                                       ¯ y  ¯ u
                              Now changing from one coordinate system to the other we find
                                                    v i = u −1
                                                         i−1  ,u i = v i−1
                              and the coordinate change could be derived from a rectangle (see figure 7.1 right):
                                                  v i =(−u i−1 ), u i = v i−1
                                                         Z 2    u 4  v 4       u 3  v 3  Z 2

                                         v 3
                                   u 3




                                                   u 2
                                   v 1
                                                                v 1
                                      u 1
                                                                   u 1
                                                  v 2
                                              Fig. 7.1. Isosceles triangles and squares  v 2  u 2


                           7.2.3 Smooth toric surfaces
                           The preceding two examples give rise to a general construction.


                           Smooth polygons

                           Let Π ⊂ R be a convex lattice polygon, that is a convex polygon whose vertices
                                     2
                           have integral coordinates. Label its vertices cyclically and attach two minimal direc-
                           tion vectors u i and v i to each vertex.
                              To proceed as in the examples, we would need that each pair (u i , v i ) can be
                           expressed as a Z-linear combination using any other pair (u j , v j ). For this it is suf-
                           ficient that each of the pairs generates the entire integer lattice, i.e.

                                                     Zu i + Zv i = Z .                    (7.2)
                                                                  2
   115   116   117   118   119   120   121   122   123   124   125