Page 122 - Geometric Modeling and Algebraic Geometry
P. 122

7 Curve Parametrization Exploiting the Newton Polygon  123
                           what “inserting an edge” meant for Π 1 in figure 7.2. It basically corresponds to the
                           resolution of a toric surface, see e.g. [4].
                                                     T
                                                             T
                              The values det((a i−1 ,b i−1 ) , (a i ,b i ) )= a i−1 b i − a i b i−1 are invariant under
                           unimodular transformations (i.e. linear transformations of the vectors by an integral
                                                                        b
                                                                    − a i 0 i 0 −1 > 1 for some i 0 .By
                           matrix with determinant 1). Assume that a i 0 −1 b i 0
                                                                             )=(0, 1). It follows
                                                                          ,b i 0
                           a suitable unimodular transformation we may assume (a i 0
                           that a i 0 −1 > 1.
                              We insert a new index, for simplicity say i 0 − ,set a  1 := 1 and determine
                                                                    1
                                                                          i 0 −
                                                                    2        2
                           b   1 by integer division s.t. 0 ≤ a i 0 −1 b  1 − b i 0 −1 <a i 0 −1 . It follows
                            i 0 −                           i 0 −
                               2                              2
                                  a       − a i 0 i 0 − 1 =1 · 1 − 0 · b  =1   and
                                              b
                                   i 0 −  1 b i 0              i 0 −  1
                                      2           2               2
                              a i 0 −1 b  1 − a  1 b i 0 −1 = a i 0 −1 b
                                   i 0 −   i 0 −           i 0 −  1 − 1 · b i 0 −1 <a i 0 −1
                                      2      2                2
                                                                                      b
                                                                                  − a i 0 i 0 −1 .
                                                   = a i 0 −1 · 1 − 0 · b i 0 −1
                                                                         = a i 0 −1 b i 0
                              By inserting the additional support half plane with normal vector (a  1 ,b  1 )
                                                                                    i 0 −  i 0 −
                                                                                       2    2
                                                                                          b
                                                                                      −a i 0 i 0 −1
                                                          , we “substitute” the value a i 0 −1 b i 0
                           and support line through the vertex v i 0
                           by the smaller value a i 0 −1 b  1 − a  1 b i 0 −1 and add a  b  1 =1
                                                  i 0 −  i 0 −            i 0 −  1 b i 0  − a i 0 i 0 −
                                                    2       2                2           2
                           to the list. All other values stay fixed. Repeating this process statement (7.3) can be
                           achieved.
                           Constructing the surface
                           Now we construct a surface following the examples of P and P ×P .For 1 ≤ i ≤
                                                                        2
                                                                              1
                                                                                  1
                                                                        K     K   K
                           n let U i := A be copies of the affine plane with coordinates u i and v i .Again we
                                       2
                                       K
                           identify U 0 and U n . We denote the coordinate axes by L i := {(u i ,v i ) ∈ U i | u i =
                           0} and R i := {(u i ,v i ) ∈ U i | v i =0} and define open embeddings of the algebraic
                                       ∗         ∗
                           torus T := (K ) where K = K \{0}:
                                        2
                                     ψ i : T → U i :(x, y)  → (u i ,v i )=(x y  ,x  −b i−1 a i−1 )
                                                                               y
                                                                   b i −a i
                           The isomorphic image of ψ i is U i \ (L i ∪ R i ) and there it has the inverse
                                                                                  v ).
                                   U i \ (L i ∪ R i ) → T :(u i ,v i )  → (x, y)=(u a i−1 a i  b i−1 b i
                                                                           v ,u
                                                                       i    i  i   i
                           For i, j ∈{1,...,n}, i  = j we define open subsets
                                            ⎧
                                                                   if i ≡ j − 1mod n,
                                            ⎨ U i \ L i
                                      U i,j :=  U i \ R i          if i ≡ j +1 mod n,
                                               U i \ (L i ∪ R i )= ψ i (T) else.
                                            ⎩
                           For 1 ≤ i ≤ n the following maps are mutually inverse and therefore isomorphisms:
                            ϕ i−1,i : U i−1,i → U i,i−1 :(u i−1 ,v i−1 )  → (u i ,v i )=(u  a i−2 b i −a i b i−2 v i−1 ,u −1  )
                                                                         i−1              i−1
                            ϕ i,i−1 : U i,i−1 → U i−1,i :(u i ,v i )  → (u i−1 ,v i−1 )=(v −1 ,u i v  a i−2 b i −a i b i−2 )
                                                                         i     i
                           If i and j are non-neighboring indices we set
   117   118   119   120   121   122   123   124   125   126   127