Page 194 - Geometric Modeling and Algebraic Geometry
P. 194

196    I. Ivrissimtzis and H.-P. Seidel
                           10.7 Appendix

                           A. The eigenvectors of Z n
                                                2
                              By Proposition 2 the two characters of Z 2 are
                                                  χ 0 : χ 0 (0) = 1,χ 0 (1) = 1         (10.30)

                           and
                                                 χ 1 : χ 1 (0) = 1,χ 1 (1) = −1         (10.31)
                                                                                    n
                           By Proposition 3 the character χ h corresponding to the element h of Z is given by
                                                                                    2
                                                              n

                                                      χ h (g):  e ihg                   (10.32)
                                                             i=1
                           where e ihg = −1 iff δ i (h)= δ i (g)=1 and e ihg =1 otherwise.
                                                                                     n
                              Finally, we can use Proposition 1 to compute the eigenvectors of the Z -circulant
                                                                                     2
                           matrices.
                           B. Exact computation of the limit shape of the prism
                              To compute the exact limit shape of A, B we write the polygons  a 1 C 1 +
                                                                                        2
                               C n−1 and  b 1 C 1 +  b n−1  C n−1 in parametric form. We notice that they are both
                           a n−1
                             2          2       2
                           planar polygons inscribed on ellipses, thus their vertices lie on the curves
                                                                                        (10.33)
                                                c a + r au cos θu a + r av sin θv a
                           and
                                                                                        (10.34)
                                                c b + r bu cos θu b + r bv sin θv b
                           respectively, where c a , c b are the centers of the ellipses, u a , v a and u b , v b are
                           orthonormal vectors on E A ,E B and θ =  2πj ,j =0, 1,...,k − 1.
                                                             k
                              Then Eq.(10.29) gives the limit shape as
                                 (c a + c b )+cos θ(r au u a + r bu u b ) + sin θ(r av v a + r bv v b )  (10.35)

                           which is again the equation of an ellipse.


                           References


                            1. Darboux, G.: Sur un probl´ eme de g´ eom´ etrie ´ el´ ementaire. Darboux Bull. (1878)
                            2. Berlekamp, E., Gilbert, E., Sinden, F.: A polygon problem. Am. Math. Mon. 72 (1965)
                              233–241
                            3. Bachmann, F., Schmidt, E.: n-Gons. University of Toronto Press (1975)
                            4. Davis, P.J.: Circulant matrices. Wiley-Interscience. (1979)
                            5. Fisher, J., Ruoff, D., Shilleto, J.: Perpendicular polygons. Am. Math. Mon. 92 (1985)
                              23–37
   189   190   191   192   193   194   195   196   197   198   199