Page 29 - Geometric Modeling and Algebraic Geometry
P. 29

1 The GAIA Project  23
                           14. S. Chau, M. Oberneder, A. Galligo, and B. J¨uttler. Intersecting biquadratic B´ ezier surface
                              patches. In this volume.
                           15. R. M. Corless, L. Gonzalez-Vega, I: Necula, and A. Shakoori. Topology determination
                                                                             ¸
                              of implicitly defined real algebraic plane curves. An. Univ. Timisoara Ser. Mat.-Inform.,
                              41(Special issue):83–96, 2003.
                           16. T. Dokken. Aspect of Intersection algorithms and Approximation, Thesis for the doctor
                              philosophias degree. PhD thesis, University of Oslo, 1997.
                           17. T. Dokken. Approximate implicitization. In Mathematical methods for curves and sur-
                              faces (Oslo, 2000), Innov. Appl. Math., pages 81–102. Vanderbilt Univ. Press, Nashville,
                              TN, 2001.
                           18. T. Dokken. Controlling the shape of the error in cubic ellipse approximation. In Curve
                              and surface design (Saint-Malo, 2002), Mod. Methods Math., pages 113–122. Nashboro
                              Press, Brentwood, TN, 2003.
                           19. T. Dokken and B. J¨uttler, editors. Computational Methods for Algebraic Spline Surfaces.
                              Springer, Heidelberg, 2005.
                           20. T. Dokken and V. Skytt. Intersection algorithms and cagd. In Applied Mathematics at
                              SINTEF. Springer, To appear.
                           21. T. Dokken and J. B. Thomassen. Overview of approximate implicitization. In Topics
                              in algebraic geometry and geometric modeling, volume 334 of Contemp. Math., pages
                              169–184. Amer. Math. Soc., Providence, RI, 2003.
                           22. T. Dokken and J. B. Thomassen. Weak approximate implicitization. In Proceedings
                              of IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06),
                              pages 204–214, Los Alamitos, CA, USA, 2006. IEEE Computer Society.
                           23. M. Elkadi, A. Galligo, and T.H. Lˆ e. Parametrized surfaces in P of bidegree (1, 2).In
                                                                             3
                              ISSAC 2004, pages 141–148. ACM, New York, 2004.
                           24. M. Elkadi and B. Mourrain. Residue and implicitization problem for rational surfaces.
                              Appl. Algebra Engrg. Comm. Comput., 14(5):361–379, 2004.
                           25. F. Etayo, L. Gonzalez-Vega, and N. del Rio. A complete solution for the ellipses intersec-
                              tion problem. Comput. Aided Geom. Design, 23(4):324–350, 2006.
                           26. F. Etayo, L. Gonz´ alez-Vega, and C. T˘ an˘ asescu. Computing the intersection curve of
                              two surfaces: The tangential case. An. Univ. Timisoara Ser. Mat.-Inform., 41(Special
                                                                    ¸
                              issue):111–121, 2003.
                           27. M. Fioravanti and L. Gonzalez-Vega. On the geometric extraneous components appearing
                              when using implicitization. In Mathematical methods for curves and surfaces: Tromsø
                              2004, Mod. Methods Math., pages 157–168. Nashboro Press, Brentwood, TN, 2005.
                           28. M. Fioravanti, L. Gonzalez-Vega, and I. Necula. Computing the intersection of two ruled
                              surfaces by using a new algebraic approach. J. Symbolic Comput.
                           29. M. Fioravanti, L. Gonzalez-Vega, and I. Necula. On the intersection with revolution and
                              canal surfaces. In M. Elkadi, B. Mourrain, and R. Piene, editors, Algebraic Geometry and
                              Geometric Modeling, Mathematics and Visualization. Springer, 2006.
                           30. G. Gatellier, A. Labrouzy, B. Mourrain, and J. P. T´ ecourt. Computing the topology of
                              three-dimensional algebraic curves. In Computational methods for algebraic spline sur-
                              faces, pages 27–43. Springer, Berlin, 2005.
                           31. L. Gonz´ alez-Vega and I. Necula. Efficient topology determination of implicitly defined
                              algebraic plane curves. Comput. Aided Geom. Design, 19(9):719–743, 2002.
                           32. L. Gonz´ alez-Vega, I. Necula, S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Algebraic meth-
                              ods in computer aided geometric design: theoretical and practical applications. In F. Chen
                              and D. Wang, editors, Geometric computation, volume 11 of Lecture Notes Series on
                              Computing, pages 1–33. World Sci. Publishing, River Edge, NJ, 2004.
   24   25   26   27   28   29   30   31   32   33   34