Page 29 - Geometric Modeling and Algebraic Geometry
P. 29
1 The GAIA Project 23
14. S. Chau, M. Oberneder, A. Galligo, and B. J¨uttler. Intersecting biquadratic B´ ezier surface
patches. In this volume.
15. R. M. Corless, L. Gonzalez-Vega, I: Necula, and A. Shakoori. Topology determination
¸
of implicitly defined real algebraic plane curves. An. Univ. Timisoara Ser. Mat.-Inform.,
41(Special issue):83–96, 2003.
16. T. Dokken. Aspect of Intersection algorithms and Approximation, Thesis for the doctor
philosophias degree. PhD thesis, University of Oslo, 1997.
17. T. Dokken. Approximate implicitization. In Mathematical methods for curves and sur-
faces (Oslo, 2000), Innov. Appl. Math., pages 81–102. Vanderbilt Univ. Press, Nashville,
TN, 2001.
18. T. Dokken. Controlling the shape of the error in cubic ellipse approximation. In Curve
and surface design (Saint-Malo, 2002), Mod. Methods Math., pages 113–122. Nashboro
Press, Brentwood, TN, 2003.
19. T. Dokken and B. J¨uttler, editors. Computational Methods for Algebraic Spline Surfaces.
Springer, Heidelberg, 2005.
20. T. Dokken and V. Skytt. Intersection algorithms and cagd. In Applied Mathematics at
SINTEF. Springer, To appear.
21. T. Dokken and J. B. Thomassen. Overview of approximate implicitization. In Topics
in algebraic geometry and geometric modeling, volume 334 of Contemp. Math., pages
169–184. Amer. Math. Soc., Providence, RI, 2003.
22. T. Dokken and J. B. Thomassen. Weak approximate implicitization. In Proceedings
of IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06),
pages 204–214, Los Alamitos, CA, USA, 2006. IEEE Computer Society.
23. M. Elkadi, A. Galligo, and T.H. Lˆ e. Parametrized surfaces in P of bidegree (1, 2).In
3
ISSAC 2004, pages 141–148. ACM, New York, 2004.
24. M. Elkadi and B. Mourrain. Residue and implicitization problem for rational surfaces.
Appl. Algebra Engrg. Comm. Comput., 14(5):361–379, 2004.
25. F. Etayo, L. Gonzalez-Vega, and N. del Rio. A complete solution for the ellipses intersec-
tion problem. Comput. Aided Geom. Design, 23(4):324–350, 2006.
26. F. Etayo, L. Gonz´ alez-Vega, and C. T˘ an˘ asescu. Computing the intersection curve of
two surfaces: The tangential case. An. Univ. Timisoara Ser. Mat.-Inform., 41(Special
¸
issue):111–121, 2003.
27. M. Fioravanti and L. Gonzalez-Vega. On the geometric extraneous components appearing
when using implicitization. In Mathematical methods for curves and surfaces: Tromsø
2004, Mod. Methods Math., pages 157–168. Nashboro Press, Brentwood, TN, 2005.
28. M. Fioravanti, L. Gonzalez-Vega, and I. Necula. Computing the intersection of two ruled
surfaces by using a new algebraic approach. J. Symbolic Comput.
29. M. Fioravanti, L. Gonzalez-Vega, and I. Necula. On the intersection with revolution and
canal surfaces. In M. Elkadi, B. Mourrain, and R. Piene, editors, Algebraic Geometry and
Geometric Modeling, Mathematics and Visualization. Springer, 2006.
30. G. Gatellier, A. Labrouzy, B. Mourrain, and J. P. T´ ecourt. Computing the topology of
three-dimensional algebraic curves. In Computational methods for algebraic spline sur-
faces, pages 27–43. Springer, Berlin, 2005.
31. L. Gonz´ alez-Vega and I. Necula. Efficient topology determination of implicitly defined
algebraic plane curves. Comput. Aided Geom. Design, 19(9):719–743, 2002.
32. L. Gonz´ alez-Vega, I. Necula, S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Algebraic meth-
ods in computer aided geometric design: theoretical and practical applications. In F. Chen
and D. Wang, editors, Geometric computation, volume 11 of Lecture Notes Series on
Computing, pages 1–33. World Sci. Publishing, River Edge, NJ, 2004.