Page 30 - Geometric Modeling and Algebraic Geometry
P. 30
24 T. Dokken
33. L. Gonz´ alez-Vega, I. Necula, and J. Puig-Pey. Manipulating 3d implicit surfaces by using
differential equation solving and algebraic techniques. In F. Chen and D. Wang, edi-
tors, Geometric computation, volume 11 of Lecture Notes Series on Computing. World
Scientific Publishing, River Edge, NJ, 2004.
34. P. H. Johansen. The geometry of the tangent developable. In Computational methods for
algebraic spline surfaces, pages 95–106. Springer, Berlin, 2005.
35. P. H. Johansen, M. Løberg, and R. Piene. Monoid hypersurfaces. In this volume.
36. B. J¨uttler, P. Chalmoviansk´y, M. Shalaby, and E. Wurm. Approximate algebraic methods
for curves and surfaces and their applications. In 21st Spring Conference on Computer
Graphics. Comenius University / ACM Siggraph, 2005.
37. B. J¨uttler, J. Schicho, and M. Shalaby. Spline implicitization of planar curves. In Curve
and surface design (Saint-Malo, 2002), Mod. Methods Math., pages 225–234. Nashboro
Press, Brentwood, TN, 2003.
38. B. J¨uttler, J. Schicho, and M. Shalaby. C spline implicitization of planar curves. In
1
F. Winkler, editor, Automated deduction in geometry, Lecture Notes in Artificial Intelli-
gence, pages 161–177, Heidelberg, 2004. Springer.
39. B. J¨uttler and W. Wang. The shape of spherical quartics. Computer Aided Geometric
Design, 20:621–636, 2003.
40. B. J¨uttler and E. Wurm. Approximate implicitization via curve fitting. In L. Kobbelt, P.
Schr¨ oder, and H. Hoppe, editors, Symposium on Geometry Processing, pages 240–247,
New York, 2003. Eurographics / ACM Siggraph.
41. T. H. Le and A. Galligo. General classification of (1,2) parametric surfaces in p , 2006.
3
In this volume.
42. B. Mourrain. Bezoutian and quotient ring structure. J. Symbolic Comput., 39(3-4):397–
415, 2005.
43. S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Parametrization of approximate algebraic
curves by lines. Theoret. Comput. Sci., 315(2-3):627–650, 2004.
44. S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Distance properties of -points on algebraic
curves. In Computational methods for algebraic spline surfaces, pages 45–61. Springer,
Berlin, 2005.
45. S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Parametrization of approximate algebraic
surfaces by lines. Comput. Aided Geom. Design, 22(2):147–181, 2005.
46. S. P´ erez-D´ ıaz and J. R. Sendra. Computing all parametric solutions for blending para-
metric surfaces. J. Symbolic Comput., 36(6):925–964, 2003.
47. S. P´ erez-D´ ıaz and J. R. Sendra. Computation of the degree of rational surface parame-
trizations. J. Pure Appl. Algebra, 193(1-3):99–121, 2004.
48. R. Piene. Singularities of some projective rational surfaces. In Computational methods
for algebraic spline surfaces, pages 171–182. Springer, Berlin, 2005.
49. J. R. Sendra. Rational curves and surfaces: algorithms and some applications. In F. Chen
and D. Wang, editors, Geometric computation, volume 11 of Lecture Notes Series on
Computing, pages 65–125. World Sci. Publishing, River Edge, NJ, 2004.
50. M. Shalaby and B. J¨uttler. Approximate implicitization of space curves and of surfaces
of revolution, 2006. In this volume.
51. M. Shalaby, B. J¨uttler, and J. Schicho. Approximate implicitization of planar curves by
piecewise rational approximation of the distance function. Appl. Algebra Eng. Comp.,to
appear.
52. M. Shalaby, J. Thomassen, E. Wurm, T. Dokken, and B. J¨uttler. Piecewise approxi-
mate implicitization: Experiments using industrial data. In M. Elkadi, B. Mourrain, and
R. Piene, editors, Algebraic Geometry and Geometric Modeling, Mathematics and Visu-
alization. Springer, 2006.