Page 48 - Geometric Modeling and Algebraic Geometry
P. 48

2 Some Covariants Related to Steiner Surfaces  45
                           Conclusion

                           In this paper, we have produced a collection of covariants for quadratic parameteri-
                           zations of surfaces. We were guided by the geometry of the Steiner surface. In future
                           work, we wish to tackle the problem in a more systematic way: exploiting methods
                           from Invariant Theory, we will try to produce systems of generators for the covari-
                           ants; or at least to describe all the covariants of low degree.


                           Acknowledgments
                           The authors want to thank the readers and anonymous referees, of this paper and of
                           a previous version, for their constructive remarks.
                             Emmanuel Briand was supported by the European Research Training Network
                           RAAG (Real Algebraic and Analytic Geometry), contract No. HPRN-CT-2001-
                           00271. He wishes to thank the Universidad de Cantabria for its hospitality in 2005.



                           References

                            1. Apery, F. (1987). Models of the Real Projective Plane. Vieweg.
                            2. Aries, F., Mourrain, B., and T´ ecourt, J.-P. (2004). Quadratically parameterized surfaces:
                              Algorithms and applications. In Geometric Modeling and Computing: Seattle 2003, pages
                              21–40. Nashboro Press.
                            3. Aries, F. and Senoussi, R. (1997). Approximation de surfaces param´ etriques par des
                              carreaux rationnels du second degr´ e en lancer de rayons. Revue Internationale de CFAO
                              et d’Informatique Graphique, 12:627–645.
                            4. Aries, F. and Senoussi, R. (2001). An implicitization algorithm for rational surfaces with
                              no base points. Journal of Symbolic Computation, 31:357–365.
                            5. Basu, S., Pollack, R., and Roy, M.-F. (2003). Algorithms in real algebraic geometry,
                              volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin.
                            6. Brill, A. v. (1872). Note ¨uber die Gleichung der auf einer Ebene abbildbaren Fl¨ achen.
                              Math. Ann., 5:401–403.
                            7. Coffman, A., Schwartz, A. J., and Stanton, C. (1996). The algebra and geometry of
                              Steiner and other quadratically parametrizable surfaces. Computer Aided Geometric De-
                              sign, 13:257–286.
                            8. Degen, W. (1996). The types of triangular B´ ezier surfaces. In Mullineux, G., editor, The
                              Mathematics of Surfaces IV, volume 38 of The Institute of Mathematics and its Applica-
                              tions Conference, pages 153–171. Clarendon, Oxford.
                            9. Espa˜ na, M.-L., Baret, F., Aries, F., Chelle, M., Andrieu, B., and Pr´ evot, L. (1999). Mod-
                              eling maize canopy 3D architecture: Application to reflectance simulation. Ecological
                              Modeling, 122:25–43.
                           10. Jouanolou, J.-P. (1996). R´ esultants anisotropes : Compl´ ements et applications. The Elec-
                              tronic Journal of Combinatorics, 3(2):1–92.
                           11. Kraft, H. and Procesi, C. (1996). Classical invariant theory, a primer. Lecture Notes.
                              Preliminary version.
                           12. Popov, V. and Vinberg, E. (1994). Algebraic Geometry IV, volume 55 of Encyclopaedia
                              of Mathematical Science, chapter Invariant Theory. Springer–Verlag.
   43   44   45   46   47   48   49   50   51   52   53