Page 56 - Geometric Modeling and Algebraic Geometry
P. 56
3 Real Line Arrangements and Surfaces with Many Real Nodes 53
construction would only yield 96 nodes which is less than the number 99 found in
[15].
Notice that it is not clear that line arrangements are the best plane curves for
our purpose, and we may ask: Is it possible to exceed the number of critical points
on two levels of the line arrangements F A 2 (x, y) using irreducible curves of higher
,d
degrees? Either in the real or in the complex case? This is not true for the real folding
polynomials. E.g., those associated to the root system B 2 consist of many ellipses
and yield surfaces with fewer singularities (see [3]).
References
1. W. Barth. Two Projective Surfaces with Many Nodes, Admitting the Symmetry of the
Icosahedron. J. Algebraic Geom., 5(1):173–186, 1996.
2. F. Bihan. Asymptotic behaviour of Betti numbers of real algebraic surfaces. Comment.
Math. Helv., 78:227–244, 2003.
3. S. Breske. Konstruktion von Fl¨ achen mit vielen reellen Singularit¨ aten mit Hilfe von Fal-
tungspolynomen. Diploma Thesis. University of Mainz, 2005. Available from [14].
4. S.V. Chmutov. Spectrum and equivariant deformations of critical points. Uspekhi mat.
nauk, 39(4):113–114, 1984. In Russian.
5. S.V. Chmutov. Examples of Projective Surfaces with Many Singularities. J. Algebraic
Geom., 1(2):191–196, 1992.
6. S.V. Chmutov. Extremal distributions of critical points and critical values. In D. T. Lˆ e,
K. Saito, and B. Teissier, editors, Singularity Theory, pages 192–205, 1995.
7. A. Degtyarev and V. Kharlamov. Topological properties of real algebraic varieties: Du
cˆ ot´ e de chez Rokhlin. Russ. Math. Surv., 55(4):735–814, 2000.
8. S. Endraß. Fl¨ achen mit vielen Doppelpunkten. DMV-Mitteilungen, 4(4):17–20, 1995.
9. S. Endraß. A Projective Surface of Degree Eight with 168 Nodes. J. Algebraic Geom.,
6(2):325–334, 1997.
10. J.E. Goodman and J. O’Rourke, editors. Handbook of Computational Geometry, chapter
5: Pseudoline Arrangements. Chapman & Hall/CRC, 2nd edition, 2004.
11. H. Harborth. Two-Colorings of Simple Arrangements. In Finite and Infinite Sets, num-
ber 37 in Colloquia Mathematica Societatis J´ anos Bolyai, pages 371–378. North-Holland,
1981.
12. D.B. Jaffe and D. Ruberman. A Sextic Surface cannot have 66 Nodes. J. Algebraic Geom.,
6(1):151–168, 1997.
13. V. Kharlamov. Overview of topological properties of real algebraic surfaces.
math.AG/0502127, 2005.
14. O. Labs. Algebraic Surface Homepage. Information, Images and Tools on Algebraic Sur-
faces. www.AlgebraicSurface.net, 2003.
15. O. Labs. A Septic with 99 Real Nodes. Preprint, math.AG/0409348, to appear in: Rend.
Sem. Mat. Univ. Pad., 2004.
16. O. Labs. Dessins D’Enfants and Hypersurfaces in P with many A j-Singularities.
3
Preprint, math.AG/0505022, 2005.
17. Y. Miyaoka. The Maximal Number of Quotient Singularities on Surfaces with Given Nu-
merical Invariants. Math. Ann., 268:159–171, 1984.
18. A. Ortiz-Rodriguez. Quelques aspects sur la g´ eom´ etrie des surfaces alg´ ebriques r´ eelles.
Bull. Sci. Math., 127:149–177, 2003.