Page 69 - Geometric Modeling and Algebraic Geometry
P. 69

66     P. H. Johansen et al.
                               Triple point  Invariants and constraints  Other singularities

                           1                                           A m i −1,  m i =12
                                 T 3,3,4

                                T 3,3,3+m  m =2,..., 12                A m i −1,  m i =12 − m

                           2                                           A m i −1,  m i =12
                                  Q 10

                                 T 9+m    m =2, 3                      A m i −1,  m i =12 − m

                           3              r 0 =max(j 0,k 0), r 1 =max(j 1,k 1), A m i −1,  m i =4 − k 0 − k 1,
                              T 3,4+r 0 ,4+r 1

                                          j 0 > 0 ↔ k 0 > 0, min(j 0,k 0) ≤ 1,  A m −1 ,

                                                                         i     m i =8 − j 0 − j 1
                                          j 1 > 0 ↔ k 1 > 0, min(j 1,k 1) ≤ 1

                           4    S series  j 0 ≤ 8, k 0 ≤ 4, min(j 0,k 0) ≤ 2,  A m i −1,  m i =4 − k 0,

                                          j 0 > 0 ↔ k 0 > 0, j 1 > 0 ↔ k 0 > 1  A m −1 ,

                                                                         i      m i =8 − j 0
                           5 T 4+j k ,4+j l ,4+j m m 1 + l 1 ≤ 4, k 2 + m 2 ≤ 4,  A m i −1,  m i =4 − m 1 − l 1,


                                          k 3 + l 3 ≤ 4, k 2 > 0 ↔ k 3 > 0,  A m −1 ,  m i =4 − k 2− m 2,

                                                                         i
                                          l 1 > 0 ↔ l 3 > 0, m 1 > 0 ↔ m 2 > 0, A m −1 ,

                                                                         i      m i =4 − k 3 − l 3
                                          min(k 2,k 3) ≤ 1, min(l 1,l 3) ≤ 1,
                                          min(m 1,m 2) ≤ 1, j k = max(k 2,k 3),
                                          j l = max(l 1,l 3), j m =max(m 1,m 2)

                           6    U series  j 1 > 0 ↔ j 2 > 0 ↔ j 3 > 0,  A m i −1,  m i =4 − j 1,


                                          at most one of j 1,j 2,j 3 > 1,  A m −1 ,  m i =4 − j 2,

                                                                         i
                                          j 1,j 2,j 3 ≤ 4              A m −1 ,

                                                                         i      m i =4 − j 3
                           7    V series  j 0 > 0 ↔ k 0 > 0, min(j 0,k 0) ≤ 1,  A m i −1,  m i =4 − j 0,
                                          j 0 ≤ 4, k 0 ≤ 4

                           8    V series                               None

                           9   P 8 = T 3,3,3                           A m i −1,  m i =12
                                      Table 4.1. Possible configurations of singularities for each case
                           this would imply a singular line on the monoid, so we assume that either (1 : 0 :
                           0)  ∈ Z(f 4 ) or (1 :0:0) is a smooth point on Z(f 4 ). Let m denote the intersection
                           number I (1:0:0) (f 3 ,f 4 ). Since Z(f 3 ) is singular at (1 :0:0) we have m  =1.From
                           [19] we know that O is a T 3,3,3+m singularity for m =2,..., 12. Note that some of
                           these complex singularities have two real forms, as illustrated in Figure 4.3.
                              B´ ezout’s theorem and Proposition 6 limit the possible configurations of singular-
                           ities on the monoid for each m. Let θ(s, t)=(−s − t ,s t, st ). Then the tangent
                                                                          2
                                                                       3
                                                                              2
                                                                   3
                           cone Z(f 3 ) is parameterized by θ as a map from P to P . When we need to compute
                                                                       2
                                                                   1
                           the intersection numbers between the rational curve Z(f 3 ) and the curve Z(f 4 ),we
                           can do that by studying the roots of the polynomial f 4 (θ). Expanding the polynomial
                           gives
                              f 4 (θ)(s, t)= a 1 s 12  − a 2 s t +(−a 3 + a 4 )s t +(4a 1 + a 5 − a 7 )s t
                                                                                      9 3
                                                   11
                                                                  10 2
                                       +(−3a 2 + a 6 − a 8 + a 11 )s t +(−3a 3 +2a 4 − a 9 + a 12 )s t
                                                                                         7 5
                                                              8 4
                                       +(6a 1 +2a 5 − a 7 − a 10 + a 13 )s t
                                                                   6 6
                                       +(−3a 2 +2a 6 − a 8 + a 14 )s t +(−3a 3 + a 4 − a 9 + a 15 )s t
                                                               5 7
                                                                                         4 8
                                       +(4a 1 + a 5 − a 10 )s t +(−a 2 + a 6 )s t  − a 3 st 11  + a 1 t .
                                                                                        12
                                                        3 9
                                                                       2 10
   64   65   66   67   68   69   70   71   72   73   74