Page 64 - Geometric Modeling and Algebraic Geometry
P. 64

4 Monoid Hypersurfaces  61
                                     ∂g
                                        =(x 1 − ϕ(x 2 )) u
                                    ∂x 0

                                     ∂g                      ∂u      ∂f d
                                        = x 0 u +(x 1 − ϕ(x 2 ))  +     (x 1 ,x 2 )
                                    ∂x 1
                                             
               ∂x 1   ∂x 1
                                     ∂g                             ∂u      ∂f d

                                        = x 0 −ϕ (x 2 )u +(x 1 − ϕ(x 2 ))  ∂x 2  +  ∂x 2 (x 1 ,x 2 )
                                    ∂x 2

                                                            ∂g
                           By using the fact that x 1 − ϕ(x 2 ) ∈  we can write J g without the symbols
                            ∂u     ∂u                      ∂x 0
                               and  ∂x 2  :
                           ∂x 1

                                 J g = x 1 − ϕ(x 2 ),x 0 u +  ∂f d  (x 1 ,x 2 ), −x 0 uϕ (x 2 )+  ∂x 2  (x 1 ,x 2 )

                                                                              ∂f d
                                                       ∂x 1
                              To make the following calculations clear, define the polynomials h i by writing
                                          d   i
                           f d (x 1 ,x 2 , 1) =  x h i (x 2 ).Now
                                          i=0  1

                                                    d                            d   i


                            J g = x 1 − ϕ(x 2 ),x 0 u +  ix i−1 h i (x 2 ), −x 0 uϕ (x 2 )+  x h (x 2 ) ,
                                                                                     1 i
                                                    i=1  1                       i=0
                           so
                                                  ¯              ¯
                                                                 k[[x 2 ]]
                                                  k[[x 0 ,x 1 ,x 2 ]]
                                                              =
                                                       J g      (A(x 2 ))
                           where

                                                 d                       d
                                A(x 2 )= ϕ (x 2 )   iϕ(x 2 ) i−1 h i (x 2 ) +  ϕ(x 2 ) h (x 2 ) .
                                                                                 i

                                                                                   i
                                                 i=1                     i=0
                           For the intersection multiplicity we have
                                                                  ¯
                                     ¯                            k[[x 1 ,x 2 ]]       ¯
                                     k[[x 1 ,x 2 ]]
                                                                                       k[[x 2 ]]
                                                       =                           =
                                                                       d   i
                             f d−1 (x 1 ,x 2 , 1),f d (x 1 ,x 2 , 1)  x 1 − ϕ(x 2 ),  x h i (x 2 )  B(x 2 )
                                                                       i=0  1
                                            d       i
                           where B(x 2 )=      ϕ(x 2 ) h i (x 2 ). Observing that B (x 2 )= A(x 2 ) gives the

                                            i=0
                           result µ =I 0 (f d−1 ,f d ) − 1.
                           Corollary 7. A monoid surface of degree d can have at most d(d − 1) singularities
                                                                            1
                                                                            2
                           in addition to O. If this number of singularities is obtained, then all of them will be
                           of type A 1 .
                           Proof. The sum of all local intersection numbers I a (f d−1 ,f d ) is givenbyB´ ezout’s
                           theorem:

                                                      I a (f d−1 ,f d )= d(d − 1).
                                               a∈Z(f d−1 ,f d )
                           The line L a will contain a singularity other than O only if I a (f d−1 ,f d ) ≥ 2, giving a
                           maximum of d(d−1) singularities in addition to O. Also, if this number is obtained,
                                      1
                                      2
                           all local intersection numbers must be exactly 2, so all singularities other than O will
                           be of type A 1 .
   59   60   61   62   63   64   65   66   67   68   69