Page 131 - Handbook Of Integral Equations
P. 131

x

                                     2
               12.   y(x)+ A    (xt – t )y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.4 with g(t)= At. Solution:
                                               A     x
                                   y(x)= f(x)+       t y 1 (x)y 2 (t) – y 2 (x)y 1 (t) f(t) dt,
                                               W   a
                     where y 1 (x), y 2 (x) is a fundamental system of solutions of the second-order linear homo-

                     geneous ordinary differential equation y xx  + Axy = 0; the functions y 1 (x) and y 2 (x) are
                     expressed in terms of Bessel functions or modified Bessel functions, depending on the sign
                     of the parameter A:
                        For A >0,
                                            √        √                √       √
                            W =3/π, y 1 (x)=  xJ 1/3 3 2  Ax 3/2  , y 2 (x)=  xY 1/3 3 2  Ax 3/2  .
                        For A <0,
                                           √             3/2         √              3/2
                                 3
                           W = – , y 1 (x)=  xI 1/3 3 2  |A| x  , y 2 (x)=  xK 1/3 3 2  |A| x  .
                                 2
                                x
                                  2
               13.   y(x)+ A    (x – xt)y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.3 with g(x)= Ax. Solution:
                                               A     x
                                   y(x)= f(x)+       x y 1 (x)y 2 (t) – y 2 (x)y 1 (t) f(t) dt,
                                               W   a
                     where y 1 (x), y 2 (x) is a fundamental system of solutions of the second-order linear homo-
                     geneous ordinary differential equation y      + Axy = 0; the functions y 1 (x) and y 2 (x) are
                                                      xx
                     expressed in terms of Bessel functions or modified Bessel functions, depending on the sign
                     of the parameter A:
                        For A >0,
                                            √        √    3/2         √       √    3/2
                                                                              2
                                                    2
                            W =3/π, y 1 (x)=  xJ 1/3 3  Ax   , y 2 (x)=  xY 1/3 3  Ax  .
                        For A <0,
                                           √             3/2         √              3/2
                                                  2
                                 3
                                                                             2
                           W = – , y 1 (x)=  xI 1/3 3  |A| x  , y 2 (x)=  xK 1/3 3  |A| x  .
                                 2
                              x

                                      2
                                 2
               14.   y(x)+ A    (t – 3x )y(t) dt = f(x).
                              a
                     This is a special case of equation 2.1.55 with λ = 1 and µ =2.
                              x

                                        2
               15.   y(x)+ A    (2xt – 3x )y(t) dt = f(x).
                              a
                     This is a special case of equation 2.1.55 with λ = 2 and µ =1.
                             x

                                           2
               16.   y(x) –   (ABxt – ABx + Ax + B)y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.16 with g(x)= Ax and h(x)= B.
                        Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                                               x
                                               1  2  2     2          1  2  2
                          R(x, t)=(Ax + B)exp  A(x – t ) + B    exp  A(s – t )+ B(x – s) ds.
                                              2                     2
                                                             t
                 © 1998 by CRC Press LLC







               © 1998 by CRC Press LLC
                                                                                                             Page 110
   126   127   128   129   130   131   132   133   134   135   136