Page 127 - Handbook Of Integral Equations
P. 127

2. Let the solution of the integral equation (1) have the form

                                                                 x
                                            d               d


                                y(x)= L 1 x,   f(x)+ L 2 x,       R(x, t)f(t) dt,           (5)
                                            dx             dx
                                                                a
               where L 1 and L 2 are some linear differential operators.
                   The solution of the more complicated integral equation
                                            x

                                             K ϕ(x), ϕ(t) y(t) dt = f(x),                   (6)
                                           a

               where ϕ(x) is an arbitrary monotone function (differentiable sufficiently many times, ϕ > 0), is
                                                                                       x
               determined by the formula

                                                1   d

                           y(x)= ϕ (x)L 1 ϕ(x),         f(x)
                                  x
                                              ϕ (x) dx

                                                x
                                                             x                              (7)
                                                  1   d

                                 + ϕ (x)L 2 ϕ(x),            R ϕ(x), ϕ(t) ϕ (t)f(t) dt.

                                    x                                     t
                                                ϕ (x) dx

                                                 x         a
                   Below are formulas for the solutions of integral equations of the form (6) for some specific
               functions ϕ(x). In all cases, it is assumed that the solution of equation (1) is known and is
               determined by formula (5).
                                λ
                   (a) For ϕ(x)= x ,
                                   1   d         2 λ–1     λ   1   d           λ  λ  
  λ–1
                                                                          x
                               λ
                       λ–1
               y(x)= λx   L 1 x ,          f(x)+ λ x  L 2 x ,             R x , t t   f(t) dt.
                                 λx λ–1  dx                  λx λ–1  dx  a
                                λx
                   (b) For ϕ(x)= e ,
                                   1  d          2 λx    λx   1   d          λx  λt 
  λt
                                                                         x
                              λx
                       λx
               y(x)= λe L 1 e ,           f(x)+ λ e L 2 e ,              R e , e   e f(t) dt.
                                 λe λx  dx                  λe λx  dx  a
                   (c) For ϕ(x) = ln(λx),
                      1            d         1            d       x  1
               y(x)=   L 1 ln(λx), x  f(x)+   L 2 ln(λx), x        R ln(λx), ln(λt) f(t) dt.
                     x            dx        x            dx    a  t
                   (d) For ϕ(x) = cos(λx),

                                            –1    d
               y(x)= –λ sin(λx)L 1 cos(λx),          f(x)
                                         λ sin(λx) dx
                                                     –1    d
                                                                  x
                                2
                             + λ sin(λx)L 2 cos(λx),              R cos(λx), cos(λt) sin(λt)f(t) dt.
                                                  λ sin(λx) dx  a
                   (e) For ϕ(x) = sin(λx),

                                           1     d
               y(x)= λ cos(λx)L 1 sin(λx),          f(x)
                                        λ cos(λx) dx
                                                                  x
                                                      1    d
                                2
                             + λ cos(λx)L 2 sin(λx),              R sin(λx), sin(λt) cos(λt)f(t) dt.
                                                  λ cos(λx) dx  a
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 105
   122   123   124   125   126   127   128   129   130   131   132