Page 122 - Handbook Of Integral Equations
P. 122

∞

               31.       K(x – t)y(t) dt = A sinh(λx).
                      x
                     Solution:
                               A   λx   A   –λx  1  	  A  A  
         1  	  A  A
                        y(x)=     e   –    e   =       –     cosh(λx)+       +     sinh(λx),
                               2B +    2B –      2 B +   B –           2 B +   B –
                                           ∞                     ∞

                                     B + =   K(–z)e λz  dz,  B – =  K(–z)e –λz  dz.
                                          0                     0
                       ∞

               32.       K(x – t)y(t) dt = A cos(λx).
                      x
                     Solution:
                                                 A
                                        y(x)=         B c cos(λx)+ B s sin(λx) ,
                                                2
                                              B + B 2 s
                                                c
                                        ∞                        ∞

                                 B c =    K(–z) cos(λz) dz,  B s =  K(–z) sin(λz) dz.
                                       0                        0
                       ∞

               33.       K(x – t)y(t) dt = A sin(λx).
                      x
                     Solution:
                                                 A
                                        y(x)=         B c sin(λx) – B s cos(λx) ,
                                              B + B 2
                                                2
                                                c   s
                                        ∞                        ∞

                                 B c =    K(–z) cos(λz) dz,  B s =  K(–z) sin(λz) dz.
                                       0                        0
                       ∞

               34.       K(x – t)y(t) dt = Ae µx  cos(λx).
                      x
                     Solution:
                                               A     µx
                                       y(x)=        e   B c cos(λx)+ B s sin(λx) ,
                                              2
                                             B + B s 2
                                              c
                                     ∞                           ∞

                               B c =   K(–z)e µz  cos(λz) dz,  B s =  K(–z)e µz  sin(λz) dz.
                                    0                           0
                       ∞

               35.       K(x – t)y(t) dt = Ae µx  sin(λx).
                      x
                     Solution:
                                               A     µx
                                       y(x)=        e   B c sin(λx) – B s cos(λx) ,
                                             B + B 2
                                              2
                                              c    s

                                     ∞                           ∞
                               B c =   K(–z)e µz  cos(λz) dz,  B s =  K(–z)e µz  sin(λz) dz.
                                    0                           0
                       ∞

               36.       K(x – t)y(t) dt = f(x).
                      x
                                                                             k
                      ◦
                     1 . For a polynomial right-hand side of the equation, f(x)=  n    A k x , the solution has the
                                                                      k=0
                     form
                                                         n
                                                               k
                                                  y(x)=    B k x ,
                                                        k=0
                     where the constants B k are found by the method of undetermined coefficients. The solution
                                                                    ◦
                     can also be obtained by the formula given in 1.9.27 (item 4 ).
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 100
   117   118   119   120   121   122   123   124   125   126   127