Page 123 - Handbook Of Integral Equations
P. 123

k
                     2 .For f(x)= e λx  n    A k x , the solution has the form
                      ◦
                                    k=0
                                                           n
                                                                 k
                                                 y(x)= e λx     B k x ,
                                                          k=0
                     where the constants B k are found by the method of undetermined coefficients. The solution
                     can also be obtained by the formula given in 1.9.29 (item 3 ).
                                                                    ◦
                     3 .For f(x)=  n    A k exp(λ k x), the solution has the form
                      ◦
                                 k=0
                                        n
                                          A k
                                                                ∞
                                 y(x)=       exp(λ k x),  B k =   K(–z) exp(λ k z) dz.
                                          B k                  0
                                       k=0
                                              k
                     4 .For f(x) = cos(λx)  n    A k x , the solution has the form
                      ◦
                                        k=0
                                                    n                n
                                                          k               k
                                       y(x) = cos(λx)  B k x + sin(λx)  C k x ,
                                                    k=0             k=0
                     where the constants B k and C k are found by the method of undetermined coefficients.
                                              k
                     5 .For f(x) = sin(λx)  n    A k x , the solution has the form
                      ◦
                                       k=0
                                                    n                n
                                                          k               k
                                       y(x) = cos(λx)  B k x + sin(λx)  C k x ,
                                                    k=0             k=0
                     where the constants B k and C k are found by the method of undetermined coefficients.

                     6 .For f(x)=  n    A k cos(λ k x), the solution has the form
                      ◦
                                 k=0
                                           n
                                                A k

                                    y(x)=      2    2  B ck cos(λ k x)+ B sk sin(λ k x) ,
                                             B   + B
                                          k=0  ck   sk
                                       ∞                          ∞

                                B ck =   K(–z) cos(λ k z) dz,  B sk =  K(–z) sin(λ k z) dz.
                                      0                          0
                      ◦
                     7 .For f(x)=  n    A k sin(λ k x), the solution has the form
                                 k=0
                                           n
                                                A k
                                    y(x)=              B ck sin(λ k x) – B sk cos(λ k x) ,
                                             B 2  + B 2
                                          k=0  ck   sk
                                       ∞                          ∞

                                B ck =   K(–z) cos(λ k z) dz,  B sk =  K(–z) sin(λ k z) dz.
                                      0                          0
                      ◦
                     8 . For arbitrary right-hand side f = f(x), the solution of the integral equation can be
                     calculated by the formula
                                                   1     c+i∞ ˜   px
                                                             f(p)
                                            y(x)=                e  dp,
                                                             ˜
                                                  2πi  c–i∞ k(–p)
                                          ∞                         ∞

                                   ˜
                                                           ˜
                                   f(p)=    f(x)e –px  dx,  k(–p)=    K(–z)e pz  dz.
                                          0                        0
                                          ˜
                                   ˜
                        To calculate f(p) and k(–p), it is convenient to use tables of Laplace transforms, and to
                     determine y(x), tables of inverse Laplace transforms.
                 © 1998 by CRC Press LLC






                © 1998 by CRC Press LLC
                                                                                                             Page 101
   118   119   120   121   122   123   124   125   126   127   128