Page 118 - Handbook Of Integral Equations
P. 118

x

               18.       K(x – t)y(t) dt = Ae λx .
                      –∞
                     Solution:
                                         A  λx           ∞     –λz
                                  y(x)=    e ,    B =     K(z)e   dz = L{K(z), λ}.
                                         B             0
                         x
                                            n λx
               19.       K(x – t)y(t) dt = Ax e  ,   n =1, 2, ...
                      –∞
                     1 . Solution with n =1:
                      ◦
                                                     A   λx   AC  λx
                                              y 1 (x)=  xe  +    e ,
                                                     B        B  2
                                           ∞                    ∞

                                     B =     K(z)e –λz  dz,  C =  zK(z)e –λz  dz.
                                          0                    0
                     It is convenient to calculate the coefficients B and C using tables of Laplace transforms
                     according to the formulas B = L{K(z), λ} and C = L{zK(z), λ}.
                     2 . Solution with n =2:
                      ◦
                                          A  2 λx   AC    λx     AC 2  AD     λx
                                   y 2 (x)=  x e  +2    xe  + 2      –      e ,
                                          B          B 2         B 3   B 2
                                ∞                    ∞                    ∞

                                                                             2
                          B =     K(z)e –λz  dz,  C =  zK(z)e –λz  dz,  D =  z K(z)e –λz  dz.
                               0                    0                     0
                     3 . Solution with n =3, 4, ... is given by:
                      ◦
                                     ∂            ∂ n     e λx            ∞     –λz
                             y n (x)=  y n–1 (x)= A         ,    B(λ)=     K(z)e   dz.
                                    ∂λ           ∂λ n  B(λ)             0
                         x
               20.       K(x – t)y(t) dt = A cosh(λx).
                      –∞
                     Solution:
                               A   λx   A   –λx  1  	  A  A  
         1  	  A  A
                        y(x)=     e  +     e   =       +     cosh(λx)+       –     sinh(λx),
                              2B –     2B +      2 B –   B +           2 B –   B +
                                            ∞                     ∞

                                      B – =   K(z)e –λz  dz,  B + =  K(z)e λz  dz.
                                           0                     0
                         x
               21.       K(x – t)y(t) dt = A sinh(λx).
                      –∞
                     Solution:
                               A   λx   A   –λx  1  	  A  A  
         1  	  A  A
                        y(x)=     e  –     e   =       –     cosh(λx)+       +     sinh(λx),
                               2B –    2B +      2 B –   B +           2 B –   B +
                                            ∞                     ∞

                                      B – =   K(z)e –λz  dz,  B + =  K(z)e λz  dz.
                                           0                     0
                         x
               22.       K(x – t)y(t) dt = A cos(λx).
                      –∞
                     Solution:
                                                 A
                                        y(x)=         B c cos(λx) – B s sin(λx) ,
                                                2
                                              B + B 2 s
                                                c
                                         ∞                       ∞

                                  B c =    K(z) cos(λz) dz,  B s =  K(z) sin(λz) dz.
                                        0                       0

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 96
   113   114   115   116   117   118   119   120   121   122   123