Page 116 - Handbook Of Integral Equations
P. 116

x

               12.      [Ag(x)h(t)+ Bg(t)h(x)]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.9.11.
                        Solution with B ≠ –A:

                                                          A
                                                                       B
                                                               x

                                        1     d    h(x)  A+B     h(t)  A+B d  f(t)
                             y(x)=                                                dt .
                                   (A + B)h(x) dx  g(x)       a  g(t)     dt h(t)
                       x


               13.       1+[g(t) – g(x)]h(x) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)=1 – g(x)h(x), h 1 (t)=1, g 2 (x)= h(x),
                     and h 2 (t)= g(t).
                        Solution:

                                              x
                                 d               f(t)       dt                x

                          y(x)=      h(x)Φ(x)               ,    Φ(x)=exp     g (t)h(t) dt .
                                                                               t
                                 dx          a   h(t)  t  Φ(t)              a
                       x

                           –λ(x–t)     λx   λt
               14.       e      + e   g(t) – e g(x) h(x) y(t) dt = f(x).
                      a
                                                                 λx
                     This is a special case of equation 1.9.15 with g 1 (x)= e h(x), h 1 (t)= g(t), g 2 (x)= e –λx  –
                                       λt
                     g(x)h(x), and h 2 (t)= e .
                         x
               15.      [g 1 (x)h 1 (t)+ g 2 (x)h 2 (t)]y(t) dt = f(x).
                      a
                     For g 2 /g 1 = const or h 2 /h 1 = const, see equation 1.9.1.

                     1 . Solution with g 1 (x)h 1 (x)+ g 2 (x)h 2 (x) /≡ 0 and f(x) /≡ const g 2 (x):
                      ◦
                                                                     x
                                       1   d      g 2 (x)h 1 (x)Φ(x)       f(t)       dt
                               y(x)=                                               ,        (1)
                                      h 1 (x) dx  g 1 (x)h 1 (x)+ g 2 (x)h 2 (x)  a  g 2 (t)  t  Φ(t)

                     where
                                                 x
                                                    h 2 (t)       g 2 (t)h 1 (t) dt
                                     Φ(x)=exp                                 .             (2)
                                                a   h 1 (t)  t  g 1 (t)h 1 (t)+ g 2 (t)h 2 (t)
                     If f(x) ≡ const g 2 (x), the solution is given by formulas (1) and (2) in which the subscript 1
                     must be changed by 2 and vice versa.

                     2 . Solution with g 1 (x)h 1 (x)+ g 2 (x)h 2 (x) ≡ 0:
                      ◦
                                            1 d     (f/g 2 )   x     1 d     (f/g 2 )   x
                                     y(x)=                 = –               ,
                                           h 1 dx (g 1 /g 2 )    h 1 dx (h 2 /h 1 )
                                                        x                  x
                     where f = f(x), g 2 = g 2 (x), h 1 = h 1 (x), and h 2 = h 2 (x).




                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 94
   111   112   113   114   115   116   117   118   119   120   121