Page 115 - Handbook Of Integral Equations
P. 115

x

               5.       [Ag(x)+ Bg(t)+ C]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.9.3. Assume that B ≠ –A and (A + B)g(x)+ C >0.
                        Solution:

                                  d                  –  A     x             –  B

                           y(x)=       (A + B)g(x)+ C   A+B    (A + B)g(t)+ C   A+B  f (t) dt .
                                                                                 t
                                 dx                        a
                       x

               6.       [g(x)+ h(t)]y(t) dt = f(x).
                      a
                     Solution:
                                  d     Φ(x)       x  f (t) dt              x  h (t) dt


                                                                               t
                                                    t
                            y(x)=                          ,   Φ(x)=exp                .
                                  dx g(x)+ h(x)  a  Φ(t)                  a  g(t)+ h(t)
                       x


               7.        g(x)+(x – t)h(x) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= g(x)+ xh(x), h 1 (t)=1, g 2 (x)= h(x),
                     and h 2 (t)= –t.
                        Solution:
                                                x
                                                                                x
                                  d      h(x)     f(t)   dt                      h(t)
                           y(x)=     Φ(x)                    ,    Φ(t)=exp –         dt .
                                 dx       g(x)    h(t)  Φ(t)                     g(t)
                                               a       t                      a
                       x


               8.        g(t)+(x – t)h(t) y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= x, h 1 (t)= h(t), g 2 (x) = 1, and h 2 (t)=
                     g(t) – th(t).
                       x

                                  λ     µ
               9.        g(x)+(Ax + Bt )h(x) y(t) dt = f(x).
                      a
                                                                      λ
                     This is a special case of equation 1.9.15 with g 1 (x)= g(x)+ Ax h(x), h 1 (t)=1, g 2 (x)= h(x),
                                 µ
                     and h 2 (t)= Bt .
                         x
                                  λ     µ
               10.       g(t)+(Ax + Bt )h(t) y(t) dt = f(x).
                      a
                                                                     λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ax , h 1 (t)= h(t), g 2 (x) = 1, and
                                  µ
                     h 2 (t)= g(t)+ Bt h(t).
                       x

               11.      [g(x)h(t) – h(x)g(t)]y(t) dt = f(x),  f(a)= f (a)=0.

                                                                  x
                      a
                     For g = const or h = const, see equation 1.9.2.
                        Solution:
                                   1 d     (f/h)   x
                             y(x)=              ,   where  f = f(x),  g = g(x),  h = h(x).
                                   h dx (g/h)   x
                     Here Af + Bg + Ch /≡ 0, with A, B, and C being some constants.




                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 93
   110   111   112   113   114   115   116   117   118   119   120