Page 111 - Handbook Of Integral Equations
P. 111

x
                                    √

               68.      (x – t) ν/2 I ν λ x – t y(t) dt = f(x).
                      a
                     Solution:
                                       2     d
                                      	 
 n–2  n     x   
 n–ν–2      √
                                y(x)=                x – t  2  J n–ν–2 λ x – t f(t) dt,
                                       λ     dx n  a
                     where –1< ν < n – 1, n =1, 2, ...
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f x (n–1) (a) = 0 are satisfied, then the solution of the integral

                                     x
                     equation can be written in the form
                                        2                                
  (n)
                                       	 
 n–2     x  
 n–ν–2      √
                                 y(x)=            x – t  2  J n–ν–2 λ x – t f t  (t) dt.
                                        λ
                                               a
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                         x               √
                           2  2 –1/4        2   2

               69.       x – t    I –1/2 λ x – t  y(t) dt = f(x).
                      0
                     Solution:                                √
                                                       x         2  2
                                               2λ d      cos λ x – t
                                       y(x)=            t   √         f(t) dt.
                                               π dx   0       x – t 2
                                                               2
                       ∞                 √


                            2  2 –1/4       2   2
               70.       t – x     I –1/2 λ t – x  y(t) dt = f(x).
                      x
                     Solution:
                                                               √
                                                        ∞        2   2
                                               2λ d       cos λ t – x
                                      y(x)= –            t   √         f(t) dt.
                                               π dx            2   2
                                                      x        t – x
                       x
                                      √
                           2  2 ν/2

               71.       x – t    I ν λ x – t 2  y(t) dt = f(x),  –1< ν <0.
                                          2
                      0
                     Solution:
                                          d     x     2  2 –(ν+1)/2    √

                                                                      2
                                  y(x)= λ      t x – t       J –ν–1 λ x – t 2  f(t) dt.
                                         dx
                                             0
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       ∞              √

                          2
                              2 ν/2
                                         2
               72.       (t – x )  I ν λ t – x 2  y(t) dt = f(x),  –1< ν <0.
                      x
                     Solution:
                                          d     ∞  2  2 –(ν+1)/2    √
                                                                      2
                                 y(x)= –λ       t (t – x )    J –ν–1 λ t – x 2  f(t) dt.
                                         dx  x
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       x

                                       s
                           k
               73.      [At I ν (λx)+ Bx I µ (λt)]y(t) dt = f(x).
                      a
                                                                              k
                                                                                          s
                     This is a special case of equation 1.9.15 with g 1 (x)= AI ν (λx), h 1 (t)= t , g 2 (x)= Bx , and
                     h 2 (t)= I µ (λt).
                 © 1998 by CRC Press LLC


                © 1998 by CRC Press LLC
                                                                                                             Page 89
   106   107   108   109   110   111   112   113   114   115   116