Page 109 - Handbook Of Integral Equations
P. 109

x

               56.      [AI ν (λx)+ BI µ (βt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= AI ν (λx) and h(t)= BI µ (βt).

                         x
                             ν
               57.      (x – t) I ν [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                           2       n    x
                                          d     2           n–ν–1
                                y(x)= A      – λ      (x – t)   I n–ν–1 [λ(x – t)] f(t) dt,
                                         dx 2        a
                                               2        Γ(ν +1) Γ(n – ν)
                                              	 
 n–1
                                          A =                            ,
                                               λ     Γ(2ν +1) Γ(2n – 2ν – 1)
                           1
                     where – < ν <  n–1  and n =1, 2, ...
                           2       2
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f x (n–1) (a) = 0 are satisfied, then the solution of the integral

                                     x
                     equation can be written in the form
                                     x                                       d 2    n
                          y(x)= A    (x – t) n–ν–1  I n–ν–1 [λ(x – t)]F(t) dt,  F(t)=  2  – λ 2  f(t).
                                   a                                        dt
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                         x
               58.      (x – t) ν+1 I ν [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where

                                          d    2           n–ν–2
                                           2      n    t
                                 g(t)= A     – λ      (t – τ)  I n–ν–2 [λ(t – τ)] f(τ) dτ,
                                         dt 2       a
                                               2      Γ(ν +1) Γ(n – ν – 1)
                                              	 
 n–2
                                          A =                            ,
                                               λ     Γ(2ν +2) Γ(2n – 2ν – 3)
                     where –1< ν <  n  – 1 and n =1, 2, ...
                                  2
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f x (n–1) (a) = 0 are satisfied, then the function g(t)defining the

                                    x
                     solution can be written in the form
                                   t                                                n
                                                                            d 2
                          g(t)= A   (t – τ) n–ν–2  I n–ν–2 [λ(t – τ)]F(τ) dτ,  F(τ)=  2  – λ 2  f(τ).
                                  a                                        dτ
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                         x
                            √
               59.      I 0 λ x – t y(t) dt = f(x).
                      a
                     Solution:
                                                 d 2     x    √
                                           y(x)=        J 0 λ x – t f(t) dt.
                                                 dx 2
                                                      a


                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 87
   104   105   106   107   108   109   110   111   112   113   114