Page 106 - Handbook Of Integral Equations
P. 106

x

               38.      [AY ν (λx)+ BY ν (λt)]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.8.37. We consider the interval [a, x] in which Y ν (λx) does not
                     change its sign.
                        Solution with B ≠ –A:
                                         1   d           –  A     x       –  B

                               y(x)= ±             Y ν (λx)   A+B    Y ν (λt)   A+B  f (t) dt .
                                                                             t
                                       A + B dx               a
                     Here the sign of Y ν (λx) should be taken.
                       x

                                        m
                           k
               39.      [At Y ν (λx)+ Bx Y µ (λt)]y(t) dt = f(x).
                      a
                                                                                         m
                                                                              k
                     This is a special case of equation 1.9.15 with g 1 (x)= AY ν (λx), h 1 (t)= t , g 2 (x)= Bx , and
                     h 2 (t)= Y µ (λt).
                         x
               40.      [AJ ν (λx)Y µ (βt)+ BJ ν (λt)Y µ (βx)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= AY ν (λx), h 1 (t)= Y µ (βt), g 2 (x)=
                     BY µ (βx), and h 2 (t)= J ν (λt).

                 1.8-2. Kernels Containing Modified Bessel Functions

                         x
               41.      I 0 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                          1     d 2  2    2    x
                                    y(x)=        – λ      (x – t) I 1 [λ(x – t)] f(t) dt.
                                          λ  dx 2       a
                         x

               42.      [I 0 (λx)– I 0 (λt)]y(t) dt = f(x),  f(a)= f (a)=0.
                                                               x
                      a
                                    d     f (x)

                                         x
                     Solution: y(x)=           .
                                   dx λI 1 (λx)
                         x
               43.      [AI 0 (λx)+ BI 0 (λt)]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.8.42. Solution with B ≠ –A:
                                         1    d          –  A     x       –  B

                                y(x)= ±            I 0 (λx)   A+B    I 0 (λt)   A+B  f (t) dt .
                                                                            t
                                       A + B dx
                                                              a
                     Here the sign of I ν (λx) should be taken.
                         x
               44.      (x – t)I 0 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                               2      3    t
                                          1   d    2
                                    g(t)=        – λ     (t – τ) I 1 [λ(t – τ)] f(τ) dτ.
                                          λ  dt 2       a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 84
   101   102   103   104   105   106   107   108   109   110   111