Page 105 - Handbook Of Integral Equations
P. 105

∞                  √

                            2  2 –1/4        2   2

               30.       t – x     J –1/2 λ t – x  y(t) dt = f(x).
                      x
                     Solution:
                                                               √  2  2
                                              2λ d    ∞  cosh λ t – x
                                     y(x)= –            t    √          f(t) dt.
                                               π dx  x         t – x 2
                                                               2
                       x
                                      √
                           2  2 ν/2

                                          2
               31.       x – t    J ν λ x – t 2  y(t) dt = f(x),  –1< ν <0.
                      0
                     Solution:                x
                                          d           2 –(ν+1)/2    √
                                                  2

                                  y(x)= λ      t x – t       I –ν–1 λ x – t 2  f(t) dt.
                                                                      2
                                         dx
                                             0
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       ∞               √


                            2  2 ν/2
               32.       t – x     J ν λ t – x 2  y(t) dt = f(x),  –1< ν <0.
                                          2
                      x
                     Solution:
                                          d     ∞     2  2 –(ν+1)/2    √

                                                                      2
                                 y(x)= –λ       t t – x       I –ν–1 λ t – x 2  f(t) dt.
                                         dx  x
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       x

                                        m
                           k
               33.      [At J ν (λx)+ Bx J µ (λt)]y(t) dt = f(x).
                      a
                                                                                         m
                                                                              k
                     This is a special case of equation 1.9.15 with g 1 (x)= AJ ν (λx), h 1 (t)= t , g 2 (x)= Bx , and
                     h 2 (t)= J µ (λt).
                         x
                            2
                                      2
               34.      [AJ (λx)+ BJ (λt)]y(t) dt = f(x).
                           ν          ν
                      a
                     Solution with B ≠ –A:
                                        1    d          –  2A     x       –  2B

                                y(x)=             J ν (λx)   A+B    J ν (λt)   A+B  f (t) dt .
                                                                            t
                                      A + B dx
                                                             a
                         x
                            k         m
               35.       AJ (λx)+ BJ (βt) y(t) dt = f(x).
                            ν         µ
                      a
                                                                                 m
                                                                k
                     This is a special case of equation 1.9.6 with g(x)= AJ (λx) and h(t)= BJ (βt).
                                                                ν                µ
                         x
               36.      [Y 0 (λx) – Y 0 (λt)]y(t) dt = f(x).
                      a

                                     d     f (x)
                                          x
                     Solution: y(x)= –          .
                                    dx λY 1 (λx)
                       x

               37.      [Y ν (λx) – Y ν (λt)]y(t) dt = f(x).
                      a
                                    d         xf (x)

                                                x
                     Solution: y(x)=                       .
                                   dx νY ν (λx) – λxY ν+1 (λx)
                 © 1998 by CRC Press LLC
                © 1998 by CRC Press LLC
                                                                                                             Page 83
   100   101   102   103   104   105   106   107   108   109   110