Page 101 - Handbook Of Integral Equations
P. 101

x

                             
 n+1
               8.        x – t   J n [λ(x – t)]y(t) dt = f(x),  n =0, 1, 2, ...
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                           2      2n+3    t
                                          d     2            n+1
                                 g(t)= A     + λ        (t – τ)  J n+1 [λ(t – τ)] f(τ) dτ,
                                         dt 2         a
                                                 2         n!(n + 1)!
                                                	 
 2n+1
                                            A =                        .
                                                 λ     (2n + 1)! (2n + 2)!
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f (2n+2) (a) = 0 are satisfied, then the function g(t)defining the

                                    x          x
                     solution can be written in the form
                                  t                                                2n+2
                                                                           d 2
                         g(t)= A   (t – τ) n–ν–2 J n–ν–2 [λ(t – τ)]F(τ) dτ,  F(τ)=  + λ 2  f(τ).
                                                                          dτ  2
                                 a
                         x
               9.       (x – t) 1/2 J 1/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                        π     d 2  2    3    x  3/2
                                 y(x)=          + λ      (x – t)  J 3/2 [λ(x – t)] f(t) dt.
                                       4λ 2  dx 2      a
                       x

               10.      (x – t) 3/2 J 1/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                        π  	  d 2  2 
 4    t  3/2
                                  g(t)=        + λ      (t – τ)  J 3/2 [λ(t – τ)] f(τ) dτ.
                                       8λ 2  dt 2     a

                         x
               11.      (x – t) 3/2 J 3/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                           √        2       3    x
                                             π     d     2
                                   y(x)=              + λ       sin[λ(x – t)] f(t) dt.
                                         2 3/2 5/2  dx 2     a
                                             λ
                       x

                             5/2
               12.      (x – t)  J 3/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                        π     d 2  2    6    t  5/2
                                g(t)=           + λ      (t – τ)  J 5/2 [λ(t – τ)] f(τ) dτ.
                                      128λ 4  dt 2      a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 79
   96   97   98   99   100   101   102   103   104   105   106