Page 96 - Handbook Of Integral Equations
P. 96

x

                                         λ
               68.      e µ(x–t) (sin x – sin t) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                        x  –µt

                                           	  1   d  
 2  e  cos tf(t) dt      sin(πλ)
                             y(x)= ke µx  cos x                        ,    k =       .
                                            cos x dx      (sin x – sin t) λ      πλ
                                                       a
                       x

                                        λ
                                 λ
               69.      e µ(x–t) (sin x – sin t)y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.59:
                                            x

                                                       λ
                                                λ
                                             (sin x – sin t)w(t) dt = e –µx f(x).
                                           a
                         x
                                   λ
                                             λ

               70.      e µ(x–t)   A sin x + B sin t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.60:
                                           x
                                                λ        λ  
       –µx
                                            A sin x + B sin t w(t) dt = e  f(x).
                                         a
                       x  µ(x–t)
                         e     y(t) dt
               71.                    = f(x),   0 < λ <1.
                      a (sin x – sin t) λ
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.61:
                                               x

                                                   w(t) dt     –µx
                                                             = e  f(x).
                                                (sin x – sin t) λ
                                              a
                       x

                           µ(x–t)      ν
               72.       Ae      + B sin (λx) y(t) dt = f(x).
                      a
                                                                                         ν
                                                                 µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B sin (λx),
                     and h 2 (t)=1.
                         x
                           µ(x–t)      ν
               73.       Ae      + B sin (λt) y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                             ν
                     h 2 (t) = sin (λt).
                       x

                                              λ
                                    λ

               74.      e µ(x–t)   A tan x + B tan t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.77:
                                          x

                                                λ        λ  
       –µx
                                            A tan x + B tan t w(t) dt = e  f(x).
                                         a
                         x
                                    λ
                                              β

               75.      e µ(x–t)   A tan x + B tan t + C y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.9.6:
                                         x
                                              λ        β     
        –µx
                                          A tan x + B tan t + C w(t) dt = e  f(x).
                                       a
                 © 1998 by CRC Press LLC


                © 1998 by CRC Press LLC
                                                                                                             Page 74
   91   92   93   94   95   96   97   98   99   100   101