Page 91 - Handbook Of Integral Equations
P. 91

x

                           µ(x–t)       λ
               29.       Ae      + B tanh x y(t) dt = f(x).
                      a
                                                                                           λ
                                                                  µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B tanh x,
                     and h 2 (t)=1.
                       x

                           µ(x–t)       λ
               30.       Ae      + B tanh t y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                              λ
                     h 2 (t) = tanh t.
                         x
                                     λ
                                               λ

               31.      e µ(x–t)   A coth x + B coth t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.90:
                                         x

                                                λ         λ  
       –µx
                                           A coth x + B coth t w(t) dt = e  f(x).
                                        a
                         x
                                     λ
                                               β

               32.      e µ(x–t)   A coth x + B coth t + C y(t) dt = f(x).
                      a
                                                                                           λ
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.9.6 with g(x)= A coth x,
                               β
                     h(t)= B coth t + C:
                                       x

                                              λ         β     
        –µx
                                         A coth x + B coth t + C w(t) dt = e  f(x).
                                      a
                       x

                           µ(x–t)       λ
               33.       Ae      + B coth x y(t) dt = f(x).
                      a
                                                                                           λ
                                                                  µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B coth x,
                     and h 2 (t)=1.
                         x
                           µ(x–t)       λ
               34.       Ae      + B coth t y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                              λ
                     h 2 (t) = coth t.
                 1.7-2. Kernels Containing Exponential and Logarithmic Functions
                       x

               35.      e λ(x–t) (ln x – ln t)y(t) dt = f(x).
                      a
                     Solution:


                                    y(x)= e λx   xϕ (x)+ ϕ (x) ,  ϕ(x)= e –λx f(x).

                                                xx      x
                         x
               36.      e λ(x–t)  ln(x – t)y(t) dt = f(x).
                      0
                     The substitution w(x)= e –λx y(x) leads to an equation of the form 1.4.2:
                                               x

                                                ln(x – t)w(t) dt = e –λx f(x).
                                              0
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 69
   86   87   88   89   90   91   92   93   94   95   96