Page 90 - Handbook Of Integral Equations
P. 90

x

                                           λ
               21.      e µ(x–t) (sinh x – sinh t) y(t) dt = f(x),  0 < λ <1.
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.58:
                                           x

                                                         λ
                                            (sinh x – sinh t) w(t) dt = e –µx f(x).
                                           a
                         x
                                          λ
                                  λ
               22.      e µ(x–t) (sinh x – sinh t)y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.59:
                                            x
                                                        λ
                                                λ
                                            (sinh x – sinh t)w(t) dt = e –µx f(x).
                                          a
                       x

                                    λ
                                               λ

               23.      e µ(x–t)   A sinh x + B sinh t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.60:
                                         x

                                                λ         λ  
       –µx
                                           A sinh x + B sinh t w(t) dt = e  f(x).
                                        a
                         x
                           µ(x–t)       λ
               24.       Ae      + B sinh x y(t) dt = f(x).
                      a
                                                                  µx
                                                                                           λ
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B sinh x,
                     and h 2 (t)=1.
                       x

                           µ(x–t)       λ
               25.       Ae      + B sinh t y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                              λ
                     h 2 (t) = sinh t.
                         x  e µ(x–t) y(t) dt
               26.                      = f(x),    0 < λ <1.
                      a (sinh x – sinh t) λ
                     Solution:
                                             sin(πλ)  µx  d     x  e –µt  cosh tf(t) dt
                                       y(x)=       e                        .
                                               π      dx  a  (sinh x – sinh t) 1–λ
                       x

                                     λ
                                                λ

               27.      e µ(x–t)   A tanh x + B tanh t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.77:
                                         x

                                                λ         λ  
       –µx
                                           A tanh x + B tanh t w(t) dt = e  f(x).
                                        a
                       x

                                                β
                                     λ
               28.      e µ(x–t)  A tanh x + B tanh t + C y(t) dt = f(x).
                      a
                                                                                           λ
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.9.6 with g(x)= A tanh x,
                               β
                     g(t)= B tanh t + C:
                                        x
                                              λ         β     
        –µx
                                         A tanh x + B tanh t + C w(t) dt = e  f(x).
                                      a
                 © 1998 by CRC Press LLC




                © 1998 by CRC Press LLC
                                                                                                             Page 68
   85   86   87   88   89   90   91   92   93   94   95