Page 94 - Handbook Of Integral Equations
P. 94

x
                              √
               52.      e µ(x–t)  cos t – cos xy(t) dt = f(x).
                      a
                     Solution:                                  x
                                          2  µx    	  1  d  
 2     e –µt  sin tf(t) dt
                                    y(x)=   e  sin x              √           .
                                          π         sin x dx        cos t – cos x
                                                               a
                         x  e µ(x–t) y(t) dt
               53.       √            = f(x).
                      a   cos t – cos x
                     Solution:
                                                1  µx  d     x  e –µt  sin tf(t) dt
                                          y(x)=   e         √           .
                                                π    dx  a    cos t – cos x

                       x

                                         λ
               54.      e µ(x–t) (cos t – cos x) y(t) dt = f(x),  0 < λ <1.
                      a
                     Solution:
                                                        x  –µt

                                           	  1   d  
 2  e  sin tf(t) dt      sin(πλ)
                             y(x)= ke µx  sin x                        ,   k =       .
                                            sin x dx      (cos t – cos x) λ      πλ
                                                       a
                       x

                                 λ
                                         λ
               55.      e µ(x–t) (cos x – cos t)y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.24:
                                             x
                                                       λ
                                                λ
                                             (cos x – cos t)w(t) dt = e –µx f(x).
                                           a
                       x

                                             λ
                                    λ

               56.      e µ(x–t)   A cos x + B cos t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.25:
                                         x

                                                λ        λ  
        –µx
                                           A cos x + B cos t w(t) dt = e  f(x).
                                         a
                       x
                         e     y(t) dt
                          µ(x–t)
               57.                    = f(x),    0 < λ <1.
                      a (cos t – cos x) λ
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.26:
                                              x

                                                   w(t) dt      –µx
                                                             = e  f(x).
                                                (cos t – cos x) λ
                                              a
                       x

                           µ(x–t)      ν
               58.       Ae      + B cos (λx) y(t) dt = f(x).
                      a
                                                                 µx
                                                                                         ν
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B cos (λx),
                     and h 2 (t)=1.
                       x

                           µ(x–t)      ν
               59.       Ae      + B cos (λt) y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                             ν
                     h 2 (t) = cos (λt).
                 © 1998 by CRC Press LLC




                © 1998 by CRC Press LLC
                                                                                                             Page 72
   89   90   91   92   93   94   95   96   97   98   99