Page 97 - Handbook Of Integral Equations
P. 97

x

                           µ(x–t)      ν
               76.       Ae      + B tan (λx) y(t) dt = f(x).
                      a
                                                                                         ν
                                                                 µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B tan (λx),
                     and h 2 (t)=1.
                       x

                           µ(x–t)      ν
               77.       Ae      + B tan (λt) y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                             ν
                     h 2 (t) = tan (λt).
                       x

                                             λ
                                   λ

               78.      e µ(x–t)   A cot x + B cot t y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.90:
                                           x
                                                λ        λ  
       –µx
                                            A cot x + B cot t w(t) dt = e  f(x).
                                         a
                       x

                                             β
                                   λ

               79.      e µ(x–t)   A cot x + B cot t + C y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.9.6:
                                         x
                                              λ        β     
        –µx
                                          A cot x + B cot t + C w(t) dt = e  f(x).
                                       a
                       x

                           µ(x–t)      ν
               80.       Ae      + B cot (λx) y(t) dt = f(x).
                      a
                                                                 µx
                                                                                         ν
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B cot (λx),
                     and h 2 (t)=1.
                       x

                           µ(x–t)      ν
               81.       Ae      + B cot (λt) y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                             ν
                     h 2 (t) = cot (λt).
                 1.7-4. Kernels Containing Hyperbolic and Logarithmic Functions
                         x
                               β          γ
               82.       A cosh (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                   β                 γ
                     This is a special case of equation 1.9.6 with g(x)= A cosh (λx) and h(t)= B ln (µt)+ C.
                       x

                               β         γ
               83.       A cosh (λt)+ B ln (µx)+ C y(t) dt = f(x).
                      a
                                                                 γ
                                                                                        β
                     This is a special case of equation 1.9.6 with g(x)= B ln (µx)+ C and h(t)= A cosh (λt).
                         x
                              β          γ
               84.       A sinh (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                   β                γ
                     This is a special case of equation 1.9.6 with g(x)= A sinh (λx) and h(t)= B ln (µt)+ C.
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 75
   92   93   94   95   96   97   98   99   100   101   102