Page 95 - Handbook Of Integral Equations
P. 95

x


               60.      e µ(x–t)  sin[λ(x – t)]y(t) dt = f(x),  f(a)= f (a)=0.
                                                                 x
                      a
                                                       2
                                                           2



                     Solution: y(x)=  1    f (x) – 2µf (x)+(λ + µ )f(x) .
                                   λ  xx        x
                       x


               61.      e µ(x–t)   A 1 sin[λ 1 (x – t)] + A 2 sin[λ 2 (x – t)] y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.41:
                                   x

                                                                           –µx
                                     A 1 sin[λ 1 (x – t)] + A 2 sin[λ 2 (x – t)] w(t) dt = e  f(x).
                                  a
                         x
                                 2
               62.      e µ(x–t)  sin [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.43:
                                             x

                                                2
                                              sin [λ(x – t)]w(t) dt = e –µx f(x).
                                            a
                         x
                                 3
               63.      e µ(x–t)  sin [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.49:
                                              x
                                                3
                                              sin [λ(x – t)]w(t) dt = e –µx f(x).
                                            a
                       x

                                 n
               64.      e µ(x–t)  sin [λ(x – t)]y(t) dt = f(x),  n =2, 3, ...
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.5.54:
                                             x

                                                n
                                              sin [λ(x – t)]w(t) dt = e –µx f(x).
                                            a
                         x         √

               65.      e µ(x–t)  sin k x – t y(t) dt = f(x).
                      a
                     Solution:                                   √
                                           2  µx  d 2     x  e –µt  cosh k x – t
                                     y(x)=   e               √          f(t) dt.
                                           πk    dx 2  a       x – t
                       x
                              √
               66.      e µ(x–t)  sin x – sin ty(t) dt = f(x).
                      a
                     Solution:                                  x
                                          2  µx    	  1   d  
 2     e –µt  cos tf(t) dt
                                    y(x)=  e  cos x                √           .
                                          π         cos x dx        sin x – sin t
                                                               a
                         x  e µ(x–t) y(t) dt
               67.       √           = f(x).
                      a   sin x – sin t
                     Solution:                            x
                                                1  µx  d     e –µt  cos tf(t) dt
                                          y(x)=  e          √            .
                                                π    dx       sin x – sin t
                                                         a

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 73
   90   91   92   93   94   95   96   97   98   99   100