Page 99 - Handbook Of Integral Equations
P. 99

x

                               β           γ
               96.       A tanh (λx)+ B cos (µt)+ C y(t) dt = f(x).
                      a
                                                                   β                 γ
                     This is a special case of equation 1.9.6 with g(x)= A tanh (λx) and h(t)= B cos (µt)+ C.
                         x
                               β           γ
               97.       A tanh (λx)+ B sin (µt)+ C y(t) dt = f(x).
                      a
                                                                   β
                                                                                     γ
                     This is a special case of equation 1.9.6 with g(x)= A tanh (λx) and h(t)= B sin (µt)+ C.

                 1.7-6. Kernels Containing Logarithmic and Trigonometric Functions

                       x

                             β           γ
               98.       A cos (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                                    γ
                                                                  β
                     This is a special case of equation 1.9.6 with g(x)= A cos (λx) and h(t)= B ln (µt)+ C.
                       x

                             β          γ
               99.       A cos (λt)+ B ln (µx)+ C y(t) dt = f(x).
                      a
                                                                 γ
                                                                                       β
                     This is a special case of equation 1.9.6 with g(x)= B ln (µx)+ C and h(t)= A cos (λt).
                       x

                             β          γ
               100.      A sin (λx)+ B ln (µt)+ C y(t) dt = f(x).
                      a
                                                                                   γ
                                                                  β
                     This is a special case of equation 1.9.6 with g(x)= A sin (λx) and h(t)= B ln (µt)+ C.
                       x

                             β          γ
               101.      A sin (λt)+ B ln (µx)+ C y(t) dt = f(x).
                      a
                                                                                   β
                                                                 γ
                     This is a special case of equation 1.9.6 with g(x)= B ln (µx) and h(t)= A sin (λt)+ C.
               1.8. Equations Whose Kernels Contain Special
                      Functions
                 1.8-1. Kernels Containing Bessel Functions

                       x

               1.       J 0 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                          1     d 2  2    2    x
                                    y(x)=        + λ      (x – t) J 1 [λ(x – t)] f(t) dt.
                                          λ  dx 2       a
                        Example. In the special case λ = 1 and f(x)= A sin x, the solution has the form y(x)= AJ 0 (x).
                       x

               2.       [J 0 (λx) – J 0 (λt)]y(t) dt = f(x).
                      a
                                     d     f (x)

                                          x
                     Solution: y(x)= –          .
                                    dx λJ 1 (λx)

                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 77
   94   95   96   97   98   99   100   101   102   103   104