Page 100 - Handbook Of Integral Equations
P. 100

x

               3.       [AJ 0 (λx)+ BJ 0 (λt)]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.8.2. We consider the interval [a, x] in which J 0 (λx) does not
                     change its sign.
                        Solution with B ≠ –A:
                                         1   d           –  A     x       –  B

                               y(x)= ±             J 0 (λx)   A+B    J 0 (λt)   A+B  f (t) dt .
                                                                             t
                                       A + B dx               a
                     Here the sign of J 0 (λx) should be taken.
                         x
               4.       (x – t) J 0 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                          1     d 2  2    3    t
                                    g(t)=       + λ      (t – τ) J 1 [λ(t – τ)] f(τ) dτ.
                                          λ  dt 2       a
                       x

               5.       (x – t)J 1 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                          1     d 2  2   4    x  2
                                   y(x)=         + λ       (x – t) J 2 [λ(x – t)] f(t) dt.
                                         3λ 3  dx 2      a
                       x

                             
 2
               6.        x – t  J 1 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                         1     d 2  2    5    t    
 2
                                   g(t)=         + λ      t – τ  J 2 [λ(t – τ)] f(τ) dτ.
                                        9λ 3  dt 2      a
                       x

                             
 n
               7.        x – t  J n [λ(x – t)]y(t) dt = f(x),  n =0, 1, 2, ...
                      a
                     Solution:
                                           2       2n+2    x
                                          d     2             n+1
                                 y(x)= A     + λ         (x – t)  J n+1 [λ(x – t)] f(t) dt,
                                          dx 2         a
                                                   2       n!(n + 1)!
                                                 	 
 2n+1
                                             A =                     .
                                                   λ     (2n)! (2n + 2)!
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f (2n+1) (a) = 0 are satisfied, then the solution of the integral

                                    x           x
                     equation can be written in the form
                                   x                                             2n+2
                                                                         d 2
                         y(x)= A    (x – t) 2n+1 J 2n+1 [λ(x – t)]F(t) dt,  F(t)=  2  + λ 2  f(t) dt.
                                  a                                     dt



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 78
   95   96   97   98   99   100   101   102   103   104   105