Page 103 - Handbook Of Integral Equations
P. 103

x

               18.      (x – t) ν+1 J ν [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where

                                          2       n    t
                                         d     2           n–ν–2
                                g(t)= A     + λ      (t – τ)   J n–ν–2 [λ(t – τ)] f(τ) dτ,
                                         dt 2       a
                                               2      Γ(ν +1) Γ(n – ν – 1)
                                              	 
 n–2
                                          A =                            ,
                                               λ     Γ(2ν +2) Γ(2n – 2ν – 3)
                     where –1< ν <  n  – 1 and n =1, 2, ...
                                  2
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f x (n–1) (a) = 0 are satisfied, then the function g(t)defining the

                                    x
                     solution can be written in the form
                                    t                                        d 2     n
                          g(t)= A  (t – τ) n–ν–2  J n–ν–2 [λ(t – τ)]F(τ) dτ,  F(τ)=  2  + λ 2  f(τ).
                                  a                                        dτ
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

                       x

                            √
               19.      J 0 λ x – t y(t) dt = f(x).
                      a
                     Solution:
                                                 d 2     x    √
                                           y(x)=        I 0 λ x – t f(t) dt.
                                                 dx 2
                                                      a
                       x

                               √ 
          √
               20.       AJ ν λ x + BJ ν λ t     y(t) dt = f(x).
                      a
                                                         √
                     We consider the interval [a, x] in which J ν λ x does not change its sign.
                        Solution with B ≠ –A:
                                      1    d         √ 
  –  A     x       √ 
  –  B

                             y(x)= ±            J ν λ x    A+B    J ν λ t    A+B  f (t) dt .
                                                                               t
                                    A + B dx                  a
                                    √
                     Here the sign J ν λ x should be taken.
                         x
                               √ 
          √
               21.       AJ ν λ x + BJ µ β t     y(t) dt = f(x).
                      a
                                                                   √ 
                √
                     This is a special case of equation 1.9.6 with g(x)= AJ ν λ x and h(t)= BJ µ β t .
                         x  √      √

               22.        x – tJ 1 λ x – t y(t) dt = f(x).
                      a
                     Solution:
                                                2 d 3     x    √
                                          y(x)=          I 0 λ x – t f(t) dt.
                                                λ dx 3
                                                       a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 81
   98   99   100   101   102   103   104   105   106   107   108