Page 108 - Handbook Of Integral Equations
P. 108

x

               49.      (x – t) 1/2 I 1/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                              2       3    x
                                        π    d     2          3/2
                                 y(x)=          – λ      (x – t)  I 3/2 [λ(x – t)] f(t) dt.
                                       4λ 2  dx 2      a
                       x

               50.      (x – t) 3/2 I 1/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                          x

                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                        π     d 2  2    4    t  3/2
                                  g(t)=         – λ     (t – τ)  I 3/2 [λ(t – τ)] f(τ) dτ.
                                       8λ 2  dt 2      a
                         x
               51.      (x – t) 3/2 I 3/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                           √        2      3    x
                                             π    d     2
                                   y(x)=              – λ      sinh[λ(x – t)] f(t) dt.
                                            λ
                                         2 3/2 5/2  dx 2     a
                         x
               52.      (x – t) 5/2 I 3/2 [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                                           x
                                                  y(x)=    g(t) dt,
                                                         a
                     where
                                        π     d 2  2    6    t  5/2
                                g(t)=            – λ     (t – τ)  I 5/2 [λ(t – τ)] f(τ) dτ.
                                      128λ 4  dt 2      a

                       x
                              2n–1

               53.       x – t  2  I 2n–1 [λ(x – t)]y(t) dt = f(x),  n =2, 3, ...
                      a             2
                     Solution:
                                           √            2      n    x
                                            π          d     2
                              y(x)=                       – λ       sinh[λ(x – t)] f(t) dt.
                                    √    2n+1         dx 2
                                      2 λ  2 (2n – 2)!!          a
                       x

               54.      [I ν (λx) – I ν (λt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x)= I ν (λx).

                       x

               55.      [AI ν (λx)+ BI ν (λt)]y(t) dt = f(x).
                      a
                     Solution with B ≠ –A:
                                        1   d           –  A     x       –  B
                                y(x)=            I ν (λx)  A+B  I ν (λt)  A+B  f (t) dt .

                                                                            t
                                      A + B dx               a


                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 86
   103   104   105   106   107   108   109   110   111   112   113