Page 112 - Handbook Of Integral Equations
P. 112

x

                           2
                                     2
               74.      [AI (λx)+ BI (λt)]y(t) dt = f(x).
                           ν         ν
                      a
                     Solution with B ≠ –A:
                                        1    d          –  2A     x       –  2B

                                y(x)=             I ν (λx)   A+B    I ν (λt)   A+B  f (t) dt .
                                                                            t
                                      A + B dx               a
                       x

                           k          s
               75.      [AI (λx)+ BI (βt)]y(t) dt = f(x).
                           ν         µ
                      a
                                                                                 s
                                                                k
                     This is a special case of equation 1.9.6 with g(x)= AI (λx) and h(t)= BI (βt).
                                                                ν                µ
                       x

               76.      [K 0 (λx) – K 0 (λt)]y(t) dt = f(x).
                      a
                                     d     f (x)

                                           x
                     Solution: y(x)= –           .
                                    dx λK 1 (λx)
                       x

               77.      [K ν (λx) – K ν (λt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x)= K ν (λx).
                         x
               78.      [AK ν (λx)+ BK ν (λt)]y(t) dt = f(x).
                      a
                     Solution with B ≠ –A:
                                                         A     x         B
                                       1    d           –               –

                               y(x)=            K ν (λx)  A+B   K ν (λt)  A+B  f (t) dt .
                                                                             t
                                     A + B dx                a
                       x

                                        s
                           k
               79.      [At K ν (λx)+ Bx K µ (λt)]y(t) dt = f(x).
                      a
                                                                                          s
                                                                               k
                     This is a special case of equation 1.9.15 with g 1 (x)= AK ν (λx), h 1 (t)= t , g 2 (x)= Bx , and
                     h 2 (t)= K µ (λt).
                         x
               80.      [AI ν (λx)K µ (βt)+ BI ν (λt)K µ (βx)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.15 with g 1 (x)= AI ν (λx), h 1 (t)= K µ (βt), g 2 (x)=
                     BK µ (βx), and h 2 (t)= I ν (λt).
                 1.8-3. Kernels Containing Associated Legendre Functions
                       x
                                     	  x
                             2 –µ/2
                          2
               81.      (x – t )  P  µ    y(t) dt = f(x),  0 < a < ∞.
                                    ν
                      a                t
                           µ
                     Here P (x) is the associated Legendre function (see Supplement 10).
                          ν
                        Solution:
                                          d n     1–µ     x  n+µ–2  –n  2–n–µ
                                                                           t
                                                          2
                                                       2
                              y(x)= x n+µ–1   x      (x – t )  2  t P ν       f(t) dt ,
                                          dx n                             x
                                                   a
                                    1
                     where µ <1, ν ≥ – ,and n =1, 2, ...
                                    2
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                 © 1998 by CRC Press LLC




                © 1998 by CRC Press LLC
                                                                                                             Page 90
   107   108   109   110   111   112   113   114   115   116   117