Page 113 - Handbook Of Integral Equations
P. 113

x
                                     	  t
                          2
                             2 –µ/2
               82.      (x – t )  P  µ    y(t) dt = f(x),  0 < a < ∞.
                                    ν
                      a                x
                           µ
                     Here P (x) is the associated Legendre function (see Supplement 10).
                          ν
                        Solution:                x
                                                                     x
                                            d n     2  2  n+µ–2  2–n–µ
                                     y(x)=        (x – t )  2  P ν      f(t) dt,
                                           dx n  a                    t
                                    1
                     where µ <1, ν ≥ – ,and n =1, 2, ...
                                    2
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                         b           	  x
                             2 –µ/2
                         2
               83.      (t – x )  P  µ    y(t) dt = f(x),  0 < b < ∞.
                                    ν
                      x                t
                           µ
                     Here P (x) is the associated Legendre function (see Supplement 10).
                          ν
                        Solution:
                                            d n     1–µ     b  2  2  n+µ–2  –n  2–n–µ
                                                                             t
                                     n n+µ–1
                            y(x)=(–1) x         x      (t – x )  2  t P ν       f(t) dt ,
                                            dx n      x                      x
                                    1
                     where µ <1, ν ≥ – ,and n =1, 2, ...
                                    2
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                       b
                                     	  t
                             2 –µ/2
                         2
               84.      (t – x )  P  µ    y(t) dt = f(x),  0 < b < ∞.
                                    ν
                      x                x
                           µ
                     Here P (x) is the associated Legendre function (see Supplement 10).
                          ν
                        Solution:
                                                                       x
                                              d n     b  2  2  n+µ–2  2–n–µ
                                            n
                                   y(x)=(–1)        (t – x )  2  P ν      f(t) dt,
                                              dx n  x                   t
                                    1
                     where µ <1, ν ≥ – ,and n =1, 2, ...
                                    2
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                 1.8-4. Kernels Containing Hypergeometric Functions
                         x


               85.      (x – t) b–1 Φ a, b; λ(x – t) y(t) dt = f(x).
                      s
                     Here Φ(a, b; z) is the degenerate hypergeometric function (see Supplement 10).
                        Solution:
                                        d n     x  (x – t) n–b–1
                                  y(x)=                   Φ –a, n – b; λ(x – t) f(t) dt,
                                        dx n  s  Γ(b)Γ(n – b)
                     where 0 < b < n and n =1, 2, ...
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(s)= f (s)= ··· = f (n–1) (s) = 0 are satisfied, then the solution of the integral

                                    x           x
                     equation can be written in the form
                                            x  (x – t) n–b–1


                                   y(x)=              Φ –a, n – b; λ(x – t) f t (n) (t) dt.
                                          s  Γ(b)Γ(n – b)
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).
                 © 1998 by CRC Press LLC





                © 1998 by CRC Press LLC
                                                                                                             Page 91
   108   109   110   111   112   113   114   115   116   117   118