Page 102 - Handbook Of Integral Equations
P. 102

x
                              2n–1
               13.      (x – t)  2 J 2n–1 [λ(x – t)]y(t) dt = f(x),  n =2, 3, ...
                      a             2
                     Solution:
                                           √            2       n    x
                                             π         d     2
                               y(x)=                      + λ       sin[λ(x – t)] f(t) dt.
                                     √   2n+1          dx 2
                                      2 λ  2 (2n – 2)!!           a
                       x

               14.      [J ν (λx) – J ν (λt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.2 with g(x)= J ν (λx).


                                       d         xf (x)
                                                   x
                        Solution: y(x)=                       .
                                       dx νJ ν (λx) – λxJ ν+1 (λx)
                       x

               15.      [AJ ν (λx)+ BJ ν (λt)]y(t) dt = f(x).
                      a
                     For B = –A, see equation 1.8.14. We consider the interval [a, x] in which J ν (λx) does not
                     change its sign.
                        Solution with B ≠ –A:

                                         1   d           –  A     x       –  B

                               y(x)= ±             J ν (λx)   A+B    J ν (λt)   A+B  f (t) dt .
                                                                             t
                                       A + B dx               a
                     Here the sign of J ν (λx) should be taken.
                         x
               16.      [AJ ν (λx)+ BJ µ (βt)]y(t) dt = f(x).
                      a
                     This is a special case of equation 1.9.6 with g(x)= AJ ν (λx) and h(t)= BJ µ (βt).

                       x

                             ν
               17.      (x – t) J ν [λ(x – t)]y(t) dt = f(x).
                      a
                     Solution:
                                          d     2          n–ν–1
                                           2       n    x
                                y(x)= A      + λ      (x – t)   J n–ν–1 [λ(x – t)] f(t) dt,
                                         dx 2        a
                                               2        Γ(ν +1) Γ(n – ν)
                                              	 
 n–1
                                          A =                            ,
                                               λ     Γ(2ν +1) Γ(2n – 2ν – 1)
                           1
                     where – < ν <  n–1  and n =1, 2, ...
                           2       2
                        If the right-hand side of the equation is differentiable sufficiently many times and the
                     conditions f(a)= f (a)= ··· = f x (n–1) (a) = 0 are satisfied, then the solution of the integral

                                     x
                     equation can be written in the form
                                    x                                               n
                                                                            d 2
                          y(x)= A    (x – t) n–ν–1  J n–ν–1 [λ(x – t)]F(t) dt,  F(t)=  2  + λ 2  f(t).
                                   a                                        dt
                     •
                       Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 80
   97   98   99   100   101   102   103   104   105   106   107