Page 92 - Handbook Of Integral Equations
P. 92

x

               37.      e λ(x–t) (A ln x + B ln t)y(t) dt = f(x).
                      a
                     The substitution w(x)= e –λx y(x) leads to an equation of the form 1.4.4:

                                             x
                                             (A ln x + B ln t)w(t) dt = e –λx f(x).
                                           a
                       x

                                  2
                                             2

               38.      e µ(x–t)   A ln (λx)+ B ln (λt) y(t) dt = f(x).
                      a
                     The substitution w(x)= e –λx y(x) leads to an equation of the form 1.4.7:
                                         x

                                              2         2            –λx
                                           A ln (λx)+ B ln (λt) w(t) dt = e  f(x).
                                        a
                         x            n
               39.      e λ(x–t)    ln(x/t)    y(t) dt = f(x),  n =1, 2, ...
                      a
                     Solution:
                                                      n+1
                                         1   λx   d                       –λx


                                  y(x)=     e   x       F λ (x),  F λ (x)= e  f(x).
                                        n! x      dx
                         x
               40.      e λ(x–t)  ln(x/t) y(t) dt = f(x).
                      a
                     Solution:
                                                           2
                                                2e λx     d       x  e –λt f(t) dt
                                          y(x)=       x                  .
                                                 πx    dx    a t  ln(x/t)
                       x
                          e
                           λ(x–t)
               41.               y(t) dt = f(x).
                      a    ln(x/t)
                     Solution:                              x
                                                  1  λx  d     e –λt f(t) dt
                                            y(x)=   e                 .
                                                  π    dx  a t  ln(x/t)
                       x

                           µ(x–t)     ν
               42.       Ae      + B ln (λx) y(t) dt = f(x).
                      a
                                                                                         ν
                                                                  µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B ln (λx),
                     and h 2 (t)=1.
                         x
                           µ(x–t)     ν
               43.       Ae      + B ln (λt) y(t) dt = f(x).
                      a
                                                                    µx
                     This is a special case of equation 1.9.15 with g 1 (x)= Ae , h 1 (t)= e –µt , g 2 (x)= B, and
                            ν
                     h 2 (t)=ln (λt).
                         x
                                     λ
               44.      e µ(x–t) [ln(x/t)] y(t) dt = f(x),  0 < λ <1.
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.4.16:
                                               x
                                                      λ
                                               [ln(x/t)] w(t) dt = e –µx f(x).
                                             a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 70
   87   88   89   90   91   92   93   94   95   96   97