Page 89 - Handbook Of Integral Equations
P. 89

x  e µ(x–t) y(t) dt
               13.                      = f(x),    0 < λ <1.
                      a (cosh x – cosh t) λ
                     Solution:
                                            sin(πλ)  µx  d     x  e –µt  sinh tf(t) dt
                                      y(x)=        e                        .
                                               π      dx  a  (cosh x – cosh t) 1–λ
                       x


               14.      e µ(x–t)   A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.41:
                                  x

                                                                            –µx
                                    A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] w(t) dt = e  f(x).
                                 a
                         x
                                  2
               15.      e µ(x–t)  sinh [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.43:
                                             x
                                                 2
                                             sinh [λ(x – t)]w(t) dt = e –µx f(x).
                                           a
                       x

                                  3
               16.      e µ(x–t)  sinh [λ(x – t)]y(t) dt = f(x).
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.49:
                                            x

                                                 3
                                             sinh [λ(x – t)]w(t) dt = e –µx f(x).
                                           a
                         x
                                  n
               17.      e µ(x–t)  sinh [λ(x – t)]y(t) dt = f(x),  n =2, 3, ...
                      a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 1.3.54:
                                            x

                                                 n
                                             sinh [λ(x – t)]w(t) dt = e –µx f(x).
                                           a
                       x
                                    √
               18.      e µ(x–t)  sinh k x – t y(t) dt = f(x).
                      a
                     Solution:                                   √
                                            2  µx  d 2     x  e –µt  cos k x – t
                                     y(x)=    e              √          f(t) dt.
                                           πk    dx 2  a       x – t
                       x
                              √
               19.      e µ(x–t)  sinh x – sinh ty(t) dt = f(x).
                      a
                     Solution:
                                        2  µx     	   1   d  
 2     x  e –µt  cosh tf(t) dt
                                  y(x)=   e  cosh x                √            .
                                        π           cosh x dx  a    sinh x – sinh t
                       x   µ(x–t)
                          e    y(t) dt
               20.       √             = f(x).
                      a   sinh x – sinh t
                     Solution:                           x
                                                1  µx  d     e –µt  cosh tf(t) dt
                                         y(x)=   e         √             .
                                               π    dx       sinh x – sinh t
                                                        a



                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 67
   84   85   86   87   88   89   90   91   92   93   94